[1] EDWARDS P J, WRATTEN S D, GREENWOOD S. Palatability of British trees to insects: constitutive and induced defences [J]. Oecologia, 1986, 69(2): 316-9. [2] LEVIN D A. The Role of Trichomes in Plant Defense [J]. The Quarterly Review of Biology, 1973, 48(1): 3. [3] 周明牂. 作物抗虫性原理与应用 [M]. 北京: 北京农业大学出版社, 1992. [4] LEVIN D A. The Chemical Defenses of Plants to Pathogens and Herbivores [J]. Annu Rev Ecol Syst, 1976, 7(1): 121-59. [5] 郭线茹, 罗梅浩, 党润生. 烟蚜危害对烟草生理及生长发育的影响 [J]. 华北农学报, 1995, 10(2): 95-9. [6] KEIN NEN M, OLDHAM N J, BALDWIN I T. Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata [J]. Journal of Agricultural Food Chemistry, 2001, 49(8): 3553-8. [7] BALDWIN I T. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity [J]. Journal of Chemical Ecology, 1999, 25(1): 3-30. [8] BALDWIN I T, KARB M J, OHNMEISS T E. Allocation of 15N from Nitrate to Nicotine: Production and Turnover of a Damage‐Induced Mobile Defense [J]. Ecology, 1994, 75(6): 1703-13. [9] KAHL J, SIEMENS D H, AERTS R J, et al. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore [J]. planta, 2000, 210(2): 336-42. [10] BALDWIN I T. Short-Term Damage-Induced Increases in Tobacco Alkaloids Protect Plants [J]. Oecologia, 1988, 75(3): 367-70. [11] BALDWIN I T. The alkaloidal responses of wild tobacco to real and simulated herbivory [J]. Oecologia, 1988, 77(3): 378-81. [12] ZONG N, WANG C-Z. Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths [J]. planta, 2007, 226(1): 215-24. [13] 秦焕菊, 张怀保, 王桂芬. 烟草次生物质── 烟碱对烟蚜影响的研究 [J]. 中国烟草学报, 1997, 3(3): 53-7. [14] 秦焕菊, 张怀宝, 王桂芬, et al. 烟草对烟蚜[Myzus persicae(Sulzer)]抗性机理的研究 [J]. 中国烟草学报, 1998, 4(1): 44-8. [15] 李庆亮. B型烟粉虱为害对烟草生理生化的影响及其诱导的防御反应 [D]. 山东泰安:山东农业大学,2009. [16] 王承香, 薛明, 毕明娟, et al. B型烟粉虱取食诱导烟草对烟蚜防御反应的时间效应 [J]. 昆虫学报, 2010, 03): 314-22. [17] KESSLER A, BALDWIN I T. Plant responses to insect herbivory: the emerging molecular analysis [J]. Annu Rev Plant Biol, 2002, 53(299-328. [18] DE MORAES C M, MESCHER M C, TUMLINSON J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females [J]. Nature, 2001, 410(6828): 577. [19] KESSLER A, BALDWIN I T. Defensive function of herbivore-induced plant volatile emissions in nature [J]. SCIENCE, 2001, 291(5511): 2141-4. [20] KESSLER A, BALDWIN I T. Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata [J]. The Plant journal : for cell and molecular biology, 2004, 38(4): 639-49. [21] 颜增光, 阎云花, 王琛柱. 棉铃虫和烟青虫取食诱导的烟草挥发物吸引棉铃虫齿唇姬蜂 [J]. 科学通报, 2005, 50(12): 1220-7. [22] BALDWIN I T. An Ecologically Motivated Analysis of Plant-Herbivore Interactions in Native Tobacco [J]. Plant Physiol, 2001, 127(4): 1449-58. [23] HERMSMEIER D, SCHITTKO U, BALDWIN I T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs [J]. Plant Physiology, 2001, 125(2): 683-700. [24] SCHITTKO U, HERMSMEIER D, BALDWIN I T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. II. Accumulation of plant mRNAs in response to insect-derived cues [J]. Plant Physiology, 2001, 125(2): 701-10. [25] KANG J H, WANG L, GIRI A, et al. Silencing Threonine Deaminase and JAR4 in Nicotiana attenuata Impairs Jasmonic Acid–Isoleucine–Mediated Defenses against Manduca sexta [J]. The Plant cell, 2006, 18(11): 3303-20. [26] GIRI A P, WUENSCHE H, MITRA S, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome [J]. Plant Physiology, 2006, 142(4): 1621-41. [27] CHITTOOR J M, LEACH J E, WHITE F F. Induction of peroxidase during defense against pathogens [J]. Pathogenesis-related proteins in plants, 1999, 171-93. [28] TUMLINSON G W F A J H. Plant–insect dialogs: complex interactions at the plant–insect interface [J]. Current Opinion in Plant Biology, 2008, 11(457-63. [29] 何晨阳. 双核丝核菌诱导水稻增强广谱抗病性和防卫酶系活性 [J]. 植物病理学报, 2001, 31(3): 208-12. [30] 王海河, 林奇英, 谢联辉, et al. 黄瓜花叶病毒三个毒株对烟草细胞内防御酶系统及细胞膜通透性的影响 [J]. 植物病理学报, 2001, 31(1): 43-9. [31] 葛少林, 程新胜, 杨丽文, et al. 机械性损伤与氨基丁酸的交互作用对烟草防卫性酶活性的影响 [J]. 热带亚热带植物学报, 2005, 13(4): 324-8. [32] 魏相峰, 汤会君. 不同抗性烟草品种感染Pseudomonas syringae pv.tabaci 病菌后几种酶活性测定 [J]. 东北农业大学学报, 2005, 16(4): 17-9. [33] 陈学平, 姚忠达, 郭家明, et al. 不同烟草品种感染TMV病程过程中CAT、PAL活力变化研究 [J]. 安徽农业大学学报, 2002, 29(2): 103-7. [34] ZHANG SHI-ZE] Z F A N A H B-Z. Enhancement of Phenylalanine Ammonia Lyase, Polyphenoloxidase, and Peroxidase in Cucumber Seedlings by Bemisia tabaci(Gennadius)(Hemiptera: Aleyrodidae) Infestation [J]. Agricultural Sciences in China, 2008, 7(1): 82-7. [35] FARMER E E, JOHNSON R R, RYAN C A. REGULATION OF EXPRESSION OF PROTEINASE-INHIBITOR GENES BY METHYL JASMONATE AND JASMONIC ACID [J]. Plant Physiology, 1992, 98(3): 995-1002. [36] FAN S, YU D, LIU C. The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis [J]. Plos One, 2013, 8(12): [37] SPRINGER A, KANG C, RUSTGI S, et al. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3383-8. [38] NABITY P D, HAUS M J, BERENBAUM M R, et al. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16663-8. [39] DONG X. SA, JA, ethylene, and disease resistance in plants [J]. Current Opinion in Plant Biology, 1998, 1(4): 316-23. [40] REYMOND P, FARMER E E. Jasmonate and salicylate as global signals for defense gene expression [J]. Current Opinion in Plant Biology, 1998, 1(1): 404-11. [41] PAUL N D, HATCHER P E, TAYLOR J E. Coping with multiple enemies: an integration of molecular and ecological perspectives [J]. Trends in Plant Science, 2000, 5(5): 200-25. [42] O'DONNELL P J, CALVERT C, ATZORN R, et al. Ethylene as a Signal Mediating the Wound Response of Tomato Plants [J]. Science, 1996, 274(274): 1914-7. [43] PENNINCKX I A M A, EGGERMONT K, TERRAS F R G, et al. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway [J]. The Plant Cell Online, 1996, 8(12): 2309-23. [44] ALONSO J M, HIRAYAMA T, ROMAN G, et al. EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis [J]. Science, 1999, 284(5423): 2148-52. [45] WU J, HETTENHAUSEN C, MELDAU S, et al. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata [J]. Plant Cell, 2007, 19(3): 1096-122. [46] WU J, BALDWIN I T. New insights into plant responses to the attack from insect herbivores [J]. Annu Rev Genet, 2010, 44(1): 1-24. [47] Voelckel C, Jander G. 1. Plants Recognize Herbivorous Insects by Complex Signalling Networks[M]// Annual Plant Reviews volume 47: Insect-Plant Interactions. John Wiley Sons, Ltd, 2014:1-35. [48] STORK W, DIEZEL C, HALITSCHKE R, et al. An ecological analysis of the herbivory-elicited JA burst and its metabolism: plant memory processes and predictions of the moving target model [J]. PLoS ONE, 2009, 4(3): e4697. [49] HOWE G A, JANDER G. Plant immunity to insect herbivores [J]. Annual review of plant biology, 2008, 59(41-66. [50] MACHADO R A, FERRIERI A P, ROBERT C A, et al. Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling [J]. New Phytologist, 2013, 200(4): 1234-46. [51] MCCLOUD E S, BALDWIN I T. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris [J]. Planta, 1997, 203(4): 430-5. [52] KAHL J, SIEMENS D H, AERTS R J, et al. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore [J]. Planta, 2000, 210(2): 336-42. [53] WINZ R A, BALDWIN I T. Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. IV. Insect-Induced Ethylene Reduces Jasmonate-Induced Nicotine Accumulation by Regulating Putrescine N-Methyltransferase Transcripts [J]. Plant Physiol, 2001, 125(4): 2189-202. [54] 宗娜, 阎云花, 王琛柱. 昆虫对植物蛋白酶抑制素的诱导及适应机制 [J]. 昆虫学报, 2003, 46 (4): 533-539 [55] ZHAO H, ZHANG X, XUE M, et al. Feeding of Whitefly on Tobacco Decreases Aphid Performance via Increased Salicylate Signaling [J]. PLOS ONE, 2015, 10(9): e0138584. [56] 毕明娟. B型烟粉虱诱导的烟草防御信号途径及b型烟粉虱和烟蚜对烟草防御反应的生理适应性差异 [D]. 山东泰安:山东农业大学2010. [57] T HASHIMOTO A, YAMADA Y. Alkaloid Biogenesis: Molecular Aspects [J]. Annual Review of Plant Biology, 2003, 45(1): 257-85. [58] NUGROHO L H, VERBERNE M C, VERPOORTE R. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants [J]. Plant Physiology Biochemistry, 2002, 40(40): 755-60. [59] BERLIN J. Formation of putrescine and cinnamoyl putrescines in tobacco cell cultures [J]. Phytochemistry, 1981, 20(1): 53-5. [60] AMIR REZA JASSBI K G, CHRISTIAN HETTENHAUSEN, AXEL SCHMIDT, AND IAN T. BALDWIN. Silencing Geranylgeranyl Diphosphate Synthase in Nicotiana attenuata Dramatically Impairs Resistance to Tobacco Hornworm [J]. Plant Physiology, 2008, 146(974-86. [61] KANG J H, WANG L, GIRI A, et al. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta [J]. Plant Cell, 2006, 18(11): 3303-20. [62] WU J, WANG L, BALDWIN I T. Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? [J]. planta, 2008, 227(5): 1161-8. [63] LEI WANG R H, JIN-HO KANG,ALBRECHT BERG,FALK HARNISCH,IAN T. BALDWIN. Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine [J]. Planta, 2007, 226(159-67. [64] WANG L, ALLMANN S, WU J, et al. Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata [J]. Plant Physiology, 2008, 146(3): 904-15. [65] LOU Y G, BALDWIN I T. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores [J]. Plant Physiology, 2006, 140(3): 1126-36. [66] NABITY P D, ZAVALA J A, DELUCIA E H. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory [J]. Ann Bot, 2009, 103(4): 655-63. [67] HUANG J, ZHANG J. Changes in the photosynthetic characteristics of cotton leaves infested by invasive mealybugs tended by native ant species [J]. Arthropod-Plant Interactions, 2016, 10(2): 161-9. [68] STEPHENS A E A, WESTOBY M. Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis [J]. Oikos, 2015, 124(3): 266-73. [69] GRAMIG G G, HARRIS M O. Plant Photosynthetic Responses During Insect Effector-Triggered Plant Susceptibility and Immunity [J]. Environmental Entomology, 2015, 44(3): 601-9. [70] MITRA S, BALDWIN I T. Independently silencing two photosynthetic proteins in Nicotiana attenuata has different effects on herbivore resistance [J]. Plant Physiology, 2008, 148(2): 1128-38.
|