[1] Dun EA, Ferguson BJ, Beveridge CA. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms[J]. Plant Physiology, 2006, 142: 812-819. [2] 杨惠杰,李义珍,杨高群. 超高产水稻的分蘖特性观察[J]. 福建农业学报,2003,18(4): 205-208. [3] 凌启鸿. 水稻精确定量栽培理论与技术[J].中国农业出版社,2006: 49-51. [4] Li XY, Qian Q, Fu ZM, et al. Control of tillering in rice[J]. Nature, 2003, 422: 618-621. [5] 李学勇,钱前,李家洋. 水稻分蘖的分子机理研究[J]. 中国科学院院刊,2003,(4): 274-276. [6] 丁艳锋, 黄丕生, 凌启鸿. 水稻分蘖发生及与特定部位叶片叶鞘含氮率的关系[J]. 南京农业大学学报,1995,18(4): 14-18. [7] 蒋彭炎, 马跃芳, 洪晓富, 等. 水稻分蘖芽的环境敏感期研究[J]. 作物学报, 1994, 20(3): 290-296. [8] 王熹. 水稻分蘖的化学调节[J]. 中国稻米,1995, (2): 35-36. [9] 张祖德. 提高水稻成穗率的化学调控技术研究[J]. 福建稻麦科技,2006,24(2):10-13 [10] 陈彩艳,邹军煌,张淑英. 独角金内酯能抑制植物的分枝并介导植物与枞枝真菌及寄生植物间的相互作用[J]. 生命科学,2009,39(6):525-533. [11] Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008,455(7210): 195-200. [12] Xu J, Ding C, Ding Y, et al. A Proteomic Approach to Analyze Differential Regulation of Proteins During Bud Outgrowth Under Apical Dominance Based on the Auxin Transport Canalization Model in Rice ( Oryza sativa, L.)[J]. Journal of Plant Growth Regulation, 2015, 34(1):122-136. [13] Beveridge C, Symons G, Turnbull C. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2[J]. Plant Physiology, 2000,123:689-698. [14] Stirnberg P, van De Sande K, Leyser O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J]. Development, 2002, 129:1131-1141. [15] Turnbull CG, Booker JP, Leyser O. Micrografting techniques for testing long-distance signalling in Arabidopsis[J]. The Plant Journal, 2002, 32:255-262. [16] Booker J, Auldridge M, Wills S, et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule[J]. Current Biology,2004, 14:1232-1238. [17] Booker J, Sieberer T, Wright W, et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J]. Developmental Cell, 2005, 8:443-449. [18]Simons JL, Napoli CA, Janssen BJ, et al. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching[J]. Plant Physiology, 2007, 143: 697-706. [19] Zou JH, Zhang SY, Zhang WP, et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. The Plant Journal, 2006, 48:687-696. [20] Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. The Plant Journal ,2007, 51:1019-1029. [21] Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455:189-195. [22] Ishikawa S, Masahiko M, Tomotsugu A, et al. Suppression of tiller bud activity in tillering dwarf mutant of rice [J]. Plant Cell Physiol, 2005, 46(1): 79-86 [23] Sorefan K, Booker J, Haurogne K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea [J]. Gene Dev, 2003, 17: 1469-1474 [24] Booker J. et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule [J]. Curr. Biol, 2004, 14: 1232–1238 [25] Johnson, X. et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are co-regulated by other long-distance signals [J]. Plant Physiol, 2006, 142:1014–1026 [26] Drummond RS. et al. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia [J]. Plant Physiol, 2009, 151:1867–1877 [27] Snowden KC. et al. The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development [J]. Plant Cell, 2005, 17: 746–759Hélène Proust, Beate Hoffmann, Xiaonan Xie, et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens[J]. Development, 2011, 138:1531-1539. [28] Lin H, Wang R, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. Plant Cell, 2009, 21: 1512-1525. [29] Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P. and Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone [J]. Dev. Cell, 2005, 8:443–449 [30] Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H. and Ruyter-Spira C. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis [J]. Plant Physiol, 2011, 155:974–987 [31] Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR. and Smith SM. Carlactone-independent seedling morphogenesis in Arabidopsis [J]. Plant J, 2013, 76:1–9. [32] Arite T. et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers [J]. Plant Cell Physiol, 2009, 50: 1416–1424 [33] Liu W. et al. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice [J]. Planta, 2009, 230:649–658 [34] Gao Z. et al. Dwarf88, a novel putative esterase gene affecting architecture of rice plant [J]. Plant Mol. Biol, 2009, 71: 265–276 [35] Stirnberg P, van De Sande K Leyser O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis [J]. Development, 2002, 129:1131–1141 [36] Jiang L, Liu X, Xiong GS. et al. DWARF 53 acts as a repressor of strigolactone signalling in rice [J]. Nature, 2013, 504: 401–405. [37] Zhou F, Lin QB, Zhu LH. et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling [J]. Nature, 2013, 504:406–410. [38] 冯丹,陈贵林. 独角金内酯调控侧枝发育的研究进展[J]. 生态学杂志,2011,30( 2) : 349- 356. [39] Yang Liu, Junxu Xu, Yanfeng Ding, et al. Auxin inhibits the outgrowth of tiller buds in rice by downregulating OsIPT expression and cytokinin biosynthesis in nodes[J]. Australian Journal of Crop Science, 2011,5(2):169-174. [40] Johnson X, Brcich T, Dun EA, et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are co-regulated by other long-distance signals[J]. Plant Phy siology, 2006,142: 1014-1026. [41] Brewer PB, Dun EA, Ferguson BJ, et al. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis[J]. Plant Physiology, 2009,150:482-493. [42] Prusinkiewicz P. et al. Control of bud activation by an auxin transport switch [J]. PNAS, 2009, 106: 17431–17436
|