欢迎访问《农学学报》,

农学学报 ›› 2025, Vol. 15 ›› Issue (10): 28-36.doi: 10.11923/j.issn.2095-4050.cjas2024-0184

• 土壤肥料资源环境生态 • 上一篇    下一篇

高原山地城市耕地健康评价及障碍因子诊断——以昆明市为例

彭云贞1(), 翁光萍2, 肖洪磊1()   

  1. 1 云南农业大学人文社会科学学院, 昆明 650201
    2 云南农业大学园林园艺学院, 昆明 650201
  • 收稿日期:2024-09-12 修回日期:2025-01-20 出版日期:2025-10-20 发布日期:2025-10-17
  • 通讯作者:
    肖洪磊,男,1979年出生,山东潍坊人,副教授,硕士生导师,主要从事乡村旅游与乡村振兴相关研究。通信地址:650201 云南省昆明市盘龙区沣源路452号 云南农业大学至诚楼119室,E-mail:
  • 作者简介:

    彭云贞,女,1999年出生,云南临沧人,在读硕士研究生,研究方向:农村发展。通信地址:650201 云南省昆明市盘龙区沣源路452号 云南农业大学至诚楼119室,E-mail:

  • 基金资助:
    云南省研究生优质课程建设项目“农村发展规划”(2023YJSYZKC06); 云南农业大学第二批校级一流本科课程项目“旅游规划与开发”(2021YLKC049); 云南农业大学第三批校级一流本科课程项目“酒店管理概论”(2023YLKC037); 云南农业大学人文社会科学学院“旅游管理学科创新团队”建设项目

Health Evaluation of Urban Cropland in Plateau Mountainous Areas and Diagnosis of Obstacle Factors: A Case Study of Kunming City

PENG Yunzhen1(), WENG Guangping2, XIAO Honglei1()   

  1. 1 College of Humanities and Social Sciences, Yunnan Agricultural University, Kunming 650201
    2 College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201
  • Received:2024-09-12 Revised:2025-01-20 Online:2025-10-20 Published:2025-10-17

摘要:

耕地健康关乎国家粮食安全战略,对农业强国建设和中国式农业现代化高质量发展具有重要意义。研究高原山地城市耕地健康状况,有利于保护生态脆弱区耕地质量产能和生态环境。本研究选取昆明市作为研究区域,构建耕地健康评价指标体系PSR模型,运用熵权-TOPSIS法和障碍度模型,对其耕地健康状况进行评价及障碍因子诊断。研究结果表明:(1)昆明市耕地健康压力、状态、响应指数分别是0.315、0.634、0.367,健康等级分别为健康、健康、亚健康;综合指数为0.346,耕地健康整体处于亚健康等级。(2)结合农业功能分区,各区县耕地健康水平呈现一定的空间分布规律:滇池流域绿色农业示范区以滇池为中心,环滇流域低,外围高;环主城高效现代农业区以东北—西南为主轴,从轴心向外逐渐降低;北部山地特色生态农业区南高北低。(3)影响昆明市整体耕地健康的首要因素是耕地压力,其次是耕地状态,最后是耕地响应,其中,人口密度、农药使用量、农用化肥使用量、耕地种植结构、农用塑料薄膜使用量是主要障碍因子。将高标准农田建设潜力耕地占比、水土综合治理面积指标纳入耕地健康评价指标体系PSR模型具有可操作性,能够有效评价耕地健康水平,为耕地保护提供对策。

关键词: 耕地健康评价, 耕地健康评价指标体系PSR模型, 障碍因子, 熵权-TOPSIS法, 障碍度模型, 昆明市

Abstract:

The health of cultivated land is related to the national food security strategy and of great significance for the construction of agricultural power and the modern and high-quality development of Chinese-style agricultural modernization. Studying the health of the arable land in the plateau mountains areas is conducive to protecting the quality and production capacity and ecological environment of cultivated land in ecological fragile areas. In this study, Kunming City was selected as the study area, we constructed the PSR model of arable land health evaluation index system, and utilized the entropy weight TOPSIS method and obstacle degree model to evaluate the arable land health status and diagnose obstacle factors. The results showed that: (1) the pressure, status and response indices of cultivated land in Kunming were 0.315, 0.634 and 0.367, respectively, with health grades of healthy and sub-healthy; the comprehensive index was 0.346, and cultivated land health was in sub-healthy grade. (2) Combined with the agricultural function zoning, the health level of cultivated land in each district and county showed a certain spatial distribution law: the green agricultural demonstration area in Dianchi Lake Basin is centered on Dianchi Lake, and the surrounding basin was low and the periphery was high. The efficient modern agricultural area around the main city took the northeast-southwest as the main axis, and gradually decreased from the axis to the outside. The northern mountainous characteristic ecological agricultural area was high in the south and low in the north. (3) The primary factor affecting the overall cropland health in Kunming was cropland pressure, followed by cropland status, and finally cropland response. Among them, the population density, use of pesticide, use of agricultural fertilizer, cropland planting structure, and use of agricultural plastic film were the main influencing obstacle factors.The inclusion of high standard farmland construction potential cropland ratio and integrated soil and water management area indicators into the PSR model of cropland health evaluation index system is operable and could effectively evaluate the level of cropland health and provide strategies for cropland protection.

Key words: cropland health evaluation, cropland health evaluation indicator system PSR, obstacle factors, entropy weight TOPSIS method, obstacle degree model, Kunming City