| [1] |
赵德英, 徐锴, 袁继存, 等. 世界梨主产国产销概况及发展趋势分析[J]. 中国果树, 2016(2):94-100.
|
| [2] |
源朝政, 郑明燕, 高小峰, 等. 梨树主要病害种类及防治措施[J]. 农业科技通讯, 2018(7):337-339.
|
| [3] |
谢志刚, 张明, 卜令龙, 等. 梨褐斑病的发生规律与防治方法[J]. 落叶果树, 2017, 49(6):40-41.
|
| [4] |
志军王. 梨树梨褐斑病防治措施[J]. 河北果树, 2014(2):41.
|
| [5] |
虹常. 金顶谢花酥梨主要真菌病害发生规律及防治对策[J]. 河南农业科学, 2007(8):83-84.
|
| [6] |
关军锋, 马文会, 周志芳. 套袋黄冠梨果面褐斑病发生的气象因子分析[J]. 落叶果树, 2009(2):14-16.
|
| [7] |
PUIG M, MORAGREGA C, RUZ L, et al. Controlling brown spot of pear by a synthetic antimicrobial peptide under field conditions[J]. Plant disease, 2015, 99(12):1816-1822.
doi: 10.1094/PDIS-03-15-0250-RE
pmid: 30699505
|
| [8] |
LLORENTE I, MORAGREGA C, RUZ L, et al. An update on control of brown spot of pear[J]. Trees (berlin,germany: west), 2012, 26(1):239-245.
|
| [9] |
NAGRALE D T, CHAURASIA A, KUMAR S, et al. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops[J]. World journal of microbiology & biotechnology, 2023, 39(4):100.
doi: 10.1007/s11274-023-03536-0
|
| [10] |
WANG B, YANG B, PENG H, et al. Genome sequence and comparative analysis of fungal antagonistic strain Bacillus velezensis LJBV19[J]. Folia microbiologica, 2023, 68(1):73-86.
doi: 10.1007/s12223-022-00996-z
|
| [11] |
李桂花, 谭琳, 沈程文, 等. 茶树根腐病拮抗放线菌分离、鉴定及生防潜能研究[J]. 植物保护, 2024, 50(5):87-96,204.
|
| [12] |
于欣茹. 棉花根际真菌中拮抗菌的筛选鉴定[J]. 安徽农学通报, 2024, 30(4):13-17.
|
| [13] |
WANG C, ZHAO D, QI G, et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides[J]. Frontiers in microbiology, 2020, 10(10):2889.
doi: 10.3389/fmicb.2019.02889
URL
|
| [14] |
LI E, LIU K, YANG S, et al. Analysis of the complete genome sequence of Paenibacillus sp. lzh-N1 reveals its antagonistic ability[J]. Bmc genomics, 2024, 25(1):276.
doi: 10.1186/s12864-024-10206-4
|
| [15] |
SARIKHANI M R, KHOSHRU B, GREINER R, et al. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer[J]. World journal of microbiology & biotechnology, 2019, 35(8):126.
doi: 10.1007/s11274-019-2702-1
|
| [16] |
KU Y L, XU G Y, ZHAO H, et al. Effects of microbial fertilizer on soil improvement and fruit quality of kiwifruit in old orchard[J]. The journal of applied ecology, 2018, 29(8):2532-2540.
|
| [17] |
KHALID M, HASSANI D, BILAL M, et al. Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L[J]. Botanical studies, 2017, 58(1):35.
doi: 10.1186/s40529-017-0189-3
URL
|
| [18] |
ZHANG H, HUA Z W, LIANG W Z, et al. The prevention of bio-organic fertilizer fermented from cow manure compost by Bacillus sp. XG-1 on watermelon continuous cropping barrier[J]. International journal environmental research public health, 2020, 17(16):5714.
doi: 10.3390/ijerph17165714
URL
|
| [19] |
CHEN Y, JIANG Z, WU D, et al. Development of a novel bio-organic fertilizer for the removal of atrazine in soil[J]. Journal of environmental management, 2019, 233:553-560.
doi: S0301-4797(18)31508-1
pmid: 30597348
|
| [20] |
ASH C, PRIEST F G, COLLINS M D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) usine a PCR probe test[J]. Antonie van leeuwenhoek, 1994, 64(3):253-260.
doi: 10.1007/BF00873085
URL
|
| [21] |
YUAN Y, ZHANG X Y, ZHAO Y, et al. A novel PL9 pectate lyase from Paenibacillus polymyxa KF-1: cloning, expression, and its application in pectin degradation[J]. International journal of molecular sciences, 2019, 20(12):3060.
doi: 10.3390/ijms20123060
URL
|
| [22] |
CUI Y, ZHAO D, LIU K, et al. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2[J]. Microbiology spectrum, 2024, 12(1):e0229323.
doi: 10.1128/spectrum.02293-23
URL
|
| [23] |
LANGENDRIES S, GOORMACHTIG S. Paenibacillus polymyxa, a Jack of all trades[J]. Environmental microbiology, 2021, 23(10):5659-5669.
doi: 10.1111/1462-2920.15450
pmid: 33684235
|
| [24] |
NODEN M, GOODYEAR J, TAYLOR S D. Effect of lipid length and cationic residues on the antibacterial and hemolytic activities of paenibacterin[J]. ACS infectious diseases, 2022, 8(10):2073-2083.
doi: 10.1021/acsinfecdis.2c00157
pmid: 36083849
|
| [25] |
WU X, SHEN X, DING R, et al. Isolation and partial characterization of antibiotics produced by Paenibacillus sp.B69[J]. Fems microbiology letters, 2010, 310(1):32-38.
doi: 10.1111/fml.2010.310.issue-1
URL
|
| [26] |
DENG Y, LU Z X, LU F X, et al. Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa[J]. Journal of microbiological methods, 2011, 85(3):175-182.
doi: 10.1016/j.mimet.2011.02.013
URL
|
| [27] |
RAN J, WU Y, ZHANG B, et al. Paenibacillus polymyxa antagonism towards Fusarium: identification and optimisation of antibiotic production[J]. Toxins, 2023, 15(2):138.
doi: 10.3390/toxins15020138
URL
|
| [28] |
PANDEY A K, BARBETTI M J, LAMICHHANE J R. Paenibacillus polymyxa[J]. Trends microbiol, 2023, 31(6):657-659.
doi: 10.1016/j.tim.2022.11.010
URL
|
| [29] |
LEE Y S, NGUYEN X H, CHO J Y, et al. Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus sp.HOA73[J]. Microbial pathogenesis, 2017, 106:139-145.
doi: 10.1016/j.micpath.2016.01.007
URL
|
| [30] |
ZHANG W, MA J, YAN Q, et al. Biochemical characterization of a novel acidic chitinase with antifungal activity from Paenibacillus xylanexedens Z2-4[J]. International journal of biological macromol, 2021, 182:1528-1536.
doi: 10.1016/j.ijbiomac.2021.05.111
URL
|