[1] |
殷瑞锋, 徐雪高, 张振. 2017年大豆市场形势分析与2018年展望[J]. 农业展望, 2017(12):4-7.
|
[2] |
成升魁, 徐增让, 谢高地, 等. 中国粮食安全百年变化历程[J]. 农学学报, 2018,8(1):186-192.
|
[3] |
李顺萍. 世界大豆生产布局及中国大豆对外依存度分析[J]. 世界农业, 2018(11):108-112.
|
[4] |
原梓涵, 邵娜. 中美贸易摩擦对大豆市场的影响及前景分析[J]. 农业展望, 2018,10,89-93.
|
[5] |
Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010,463:178-183.
doi: 10.1038/nature08670
URL
pmid: 20075913
|
[6] |
张彦威, 李伟, 张礼凤, 等. 基于重测序的大豆新品种齐黄34 的全基因组变异挖掘[J]. 中国油料作物学报, 2016,38(2):150-158.
doi: 10.7505/j.issn.1007-9084.2016.02.003
URL
|
[7] |
Park J, Lee Y, Kang B, Wi. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants[J]. Theoretical and Applied Genetics, 2004,109:1562-1567.
doi: 10.1007/s00122-004-1790-x
URL
|
[8] |
Vidal J R, Kikkert J R, Wallace PGReisch B I. High-efficiency biolistic co-transformation and regeneration of 'Chardonnay' (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes[J]. Plant Cell Reports, 2003,22(4):252-260.
doi: 10.1007/s00299-003-0682-x
URL
|
[9] |
马潞林, 宋一萌, 葛力源. 基因测序技术的发展与临床应用概述[J]. 重庆医科大学学报, 2018,43(4):477-479.
|
[10] |
Maxam A M, Gilbert W. A New Method for Sequencing DNA[J]. Proc Natl Acad Sci USA, 1977,74(2):560-564.
doi: 10.1073/pnas.74.2.560
URL
pmid: 265521
|
[11] |
陶申童. 基于重测序的杨树基因组重组事件的研究[D]. 南京:南京林业大学, 2017.
|
[12] |
Mardis E R. The impact of next-generation sequencing technology on genetics[J]. Trends in Genetics, 2008,24(3):133-141.
doi: 10.1016/j.tig.2007.12.006
URL
|
[13] |
Shendure J, Porreca G J, Reppas N B, et al. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome[J]. Science, 2005,309(5741):1728-1732.
doi: 10.1126/science.1117389
URL
pmid: 16081699
|
[14] |
Pop M, Salzberg S L. Bioinformatics challenges of new sequencing technology[J]. Trend in Genetics, 2008,24(3):133-141.
doi: 10.1016/j.tig.2007.12.007
URL
|
[15] |
Steinmann K E, Hart C E, Thompson J F, et al. Helicos Single-molecule Sequencing of Bacterial Genomes[J]. Methods Mol Biol., 2011,733:3-24.
doi: 10.1007/978-1-61779-089-8_1
URL
pmid: 21431759
|
[16] |
Ying Y L, Cao C, Long Y T. Single MoleculeAnalysis by Bio-logical Nanopore Sensors[J]. Analyst, 2014,139(16):3826-3835.
doi: 10.1039/c4an00706a
URL
|
[17] |
Miten J, Hugh E. Olsen, Benedict Paten, et al. The Oxford Nanopore Min ION: delivery of nanopore sequencing to the genomics community[J]. Genome Biology, 2016,17(1):239.
doi: 10.1186/s13059-016-1103-0
URL
pmid: 27887629
|
[18] |
Tyson J R, O'Neil N J, Jain M, et al. Min ION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome[J]. Genome Research, 2018,28:266-274.
doi: 10.1101/gr.221184.117
URL
pmid: 29273626
|
[19] |
Giordano F, Aigrain L, Quail M A., et al. De novo yeast genome assemblies from Min ION, Pac Bio and Mi Seq platforms[J]. Scienific Reports, 2017,7(1):3935.
|
[20] |
Haque F, Li J, Wu H C, et al. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA[J]. Nano Today, 2013,8(1):56-74.
doi: 10.1016/j.nantod.2012.12.008
URL
|
[21] |
冉洪. 厚壁毛竹种质性状的重测序研究[D]. 北京:中国林业科学研究院, 2016.
|
[22] |
GOFF, Stephen A, RICKE, et al. A draft séquence of the rice genome (Oryza sativa L. ssp. japonica):The rice.genome[J]. Science, 2002,296(5565):92-100.
doi: 10.1126/science.1068275
URL
pmid: 11935018
|
[23] |
Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature genetics, 2009,41(12):1275-81.
doi: 10.1038/ng.475
URL
pmid: 19881527
|
[24] |
Schnable P S, Ware D, Fulton R S, et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics[J]. Science, 2009,326(5956):1112-5.
doi: 10.1126/science.1178534
URL
pmid: 19965430
|
[25] |
Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009,457(7229):551-6.
doi: 10.1038/nature07723
URL
pmid: 19189423
|
[26] |
陈璇, 郭蓉, 王璐, 等. 基于全基因组重测序的野生型大麻和栽培型大麻的多态性SNP分析[J]. 分子植物育种, 2018,16(3):893-897.
|
[27] |
Barabaschi D, Tondelli A, Desiderio F, et al. Next generation breeding[J]. Plant Science, 2016,242:3-13.
doi: 10.1016/j.plantsci.2015.07.010
URL
pmid: 26566820
|
[28] |
胡鸣, 姚圣黎, 程晓晖, 等. 基于高深度重测序的春性、半冬性和冬性甘蓝型油菜基因组遗传变异分析[J]. 中国油料作物学报, 2018,40(4):469-478.
|
[29] |
任民, 程立锐, 刘旦, 等. 基于RAD 重测序技术开发烟草品种 SNP 位点[J]. 中国烟草科学, 2018,39(3):10-17.
|
[30] |
Wang W S, Ramil M, Hu Z Q, et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice[J]. Nature, 2018,557:43-49.
doi: 10.1038/s41586-018-0063-9
URL
pmid: 29695866
|
[31] |
赵庆英, 张瑞娟, 王瑞良, 等. 基于名优谷子品种晋谷 21 全基因组重测序的分子标记开发[J]. 作物学报, 2018,44(5):686-696.
|
[32] |
Lam H M, Xu X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nat Genet, 2010,42:1053-1059.
doi: 10.1038/ng.715
URL
pmid: 21076406
|
[33] |
李泽锋. 一个中国南方野生大豆基因组深度测序及其分析[D]. 杭州:浙江大学, 2012.
|
[34] |
Zhou L, Wang S B, Jian J, et al. Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method[J]. Scientific Reports, 2015,5:9350.
doi: 10.1038/srep09350
URL
pmid: 25797785
|
[35] |
Wu X, Zhou G, Chen Y, et al. Soybean cyst nematode resistance emerged via artificial selection of duplicated serine hydroxymethyltransferase genes[J]. Frontiers in Plant Science, 2016,7(17):998.
|
[36] |
周航. 利用Gm ARR10 基因创制大豆新种质[D]. 贵阳:贵州大学, 2017.
|
[37] |
葛逢勇. 抗大豆孢囊线虫4号生理小种的P1437654突变体的筛选与全基因组测序[D]. 北京:中国农业科学院, 2018.
|
[38] |
张峰阁. 大豆结荚习性控制基因的遗传定位[D]. 北京:中国科学院大学, 2018.
|
[39] |
Zhong-feng Li, Yong Guo, Lin Ou, et al. Identifcation of the dwarf gene GmDW1 in soybean (Glycine max L.) by combining mapping-by-sequencing and linkage analysis[J]. Theoretical and Applied Genetics, 2018,131:1001-1016.
doi: 10.1007/s00122-017-3044-8
URL
pmid: 29550969
|
[40] |
Zeng H Q, Wang G P, Zhang Y Q, et al. Genome-wide identification of phosphate- deficiency- responsive genes in soybean roots by high-throughput sequencing[J]. Plant Soil, 2016,398:207-227.
doi: 10.1007/s11104-015-2657-4
URL
|
[41] |
朱晓岚. 黑豆抗胞囊线虫基因序列多样性及功能分析[D]. 沈阳:沈阳农业大学, 2017.
|