[1]IPCC. IPCC fifth Assessment Report (AR5)[M]. Cambridge: Cambridge University Press,2013. [2]贠汉伯, 吴青柏, 芮鹏飞, 等. 适用于多年冻土区具有碳通量自动观测性能的OTC系统开发设计[J]. 冰川冻土, 2015, 37 (2): 454-460. [3]徐振锋, 胡庭兴, 李小艳, 等. 川西亚高山采伐迹地草坡群落对模拟增温的短期响应[J]. 生态学报, 2009, 29 (6) : 2899-2905. [4]石福孙, 吴宁, 罗鹏.川西北亚高山草地植物群落结构及生物量对温度升高的响应[J]. 生态学报, 2008 (11) : 5286-5293. [5]Klanderud K, Totland O.Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hot spot[J]. Ecology, 2005, 86 (8) : 2047-2054. [6]珊丹, 韩国栋, 赵萌莉, 等.控制性增温和施氮对荒漠草原土壤呼吸的影响[J]. 干旱区资源与环境, 2009, 23 (9) : 106-112. [7]徐满厚, 薛娴.气候变暖对高寒地区植物生长与物候影响分析[J]. 干旱区资源与环境, 2013, 27 (3) : 137-141. [8]Walther G R, Beissner S, Burga C A.Trends in the upward shift of alpine plants[J]. Journal of Vegetation Science, 2005, 16 (5): 541-548. [9]Carlyle CN, Fraser LH, Turkington R.Response of grass-land biomass production to simulated climate change and clipping along an elevation gradient[J]. Oecologia, 2014, 174: 1065-1073. [10]余欣超, 姚步青, 周华坤, 等.青藏高原两种高寒草地地下生量及其碳分配对长期增温的响应差异[J]. 科学通报, 2015, 60 (4) : 379-388. [11]Xu MH, Peng F, You QG, et al.Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow[J]. Environmental and Experimental Botany, 2015, 109: 54-62. [12]林丽, 张德罡, 曹广民, 等.高寒嵩草草地植物群落数量特征对不同利用强度的短期响应[J]. 生态学报, 2016. 36 (24) : 1-10. [13]Gaston KJ. Global patterns in biodiversity[J]. Nature, 2000, 405, 220-227. [14]贺金生, 陈伟烈. 陆地植物群落物种多样性的梯度变化特征[J]. 生态学报,1997 (01) : 93-101. [15]Gentry A H.Changes in plant community diversity and floristic composition on environmental and geographical gradients[J]. Annals of the Missouri Botanical Garden, 1988, 75: 1-34. [16]Whittaker R H.Vegetation of the Siskiyou Mountains, Oregon and California[J]. Ecological Monographs, 1960, 30: 279-338. [17]Peet R K.Forest vegetation of the Colorado, Front Range; Pattern of species diversity[J]. Vegetatio, 1978, 37: 65-78. [18]Itow S.Species turnover and diversity patterns along an elevation broad - leaved forest coenocline[J]. Journal of Vegetation Science, 1991, 2: 477-484. [19]卢训令, 胡楠, 丁圣彦, 等.伏牛山自然保护区物种多样性分布格局[J]. 生态学报, 2010, 30 (21) : 5790-5798. [20]Daubenmire R Daubenmire J B.Forest vegetation of eastern Washington and northern Idaho[J]. Washington Agric. Expt. Sta. Tech. Bull. , 1968, 60: 1-104. [21]段敏杰, 高清竹, 郭亚奇, 等.藏北高寒草地植物群落物种多样性沿海拔梯度的分布格局[J]. 草业科学, 2011, 28 (10) : 1845-1850. [22]孔祥海, 李振基.福建梅花山常绿阔叶林植物物种多样性及其海拔梯度格局[J]. 植物分类与资源学报, 2012, 34 (02) : 179-186. [23]牛常青, 曲波, 牛霞霞.乌金山植物群落物种多样性的垂直分布格局[J]. 晋中学院学报, 2014, 31 (03) : 56-63. [24]Baruch Z.Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan paramos[J]. Vegetation, 1984, 55: 115-126. [25]Wilson J B Sydes M T. Some tests for niche limitation by examination of species diversity in the Dunedin area , New Zealand[J]. N. Z. J. Bot. , 1988, 26: 237-244. [26]刘哲, 李奇, 陈懂懂, 等.青藏高原高寒草地物种多样性的海拔梯度分布格局及对地上生物量的影响[J]. 生物多样性, 2015, 23 (04) : 451-462. [27]徐满厚, 刘敏, 薛娴, 等.增温、刈割对高寒草地植被物种多样性和地下生物量的影响[J]. 生态学杂志, 2015, 34 (09) : 2432-2439. [28]陈骥, 曹军骥, 金钊, 等.模拟增温对青海湖鸟岛高寒草原群落结构影响初步研究[J]. 干旱区资源与环境, 2014, 28 (05) : 127-133. [29]周华坤,周兴民,赵新全.模拟增温效应对矮嵩草草地影响的初步研究[J]. 植物生态学报, 2000 (05) : 547-553. [30]宗宁, 柴曦, 石培礼, 等.藏北高寒草地群落结构与物种组成对增温与施氮的响应[J]. 应用生态学报, 2016, 27 (12) : 3739-3748. [31]姜炎彬, 范苗, 张扬建.短期增温对藏北高寒草地植物群落特征的影响[J]. 生态学杂志, 2017, 36 (03) : 616-622. [32]李娜, 王根绪, 杨燕, 等.短期增温对青藏高原高寒草地植物群落结构和生物量的影响[J]. 生态学报, 2011, 31 (04) : 895-905. [33]Kratochwil A. Biodiversity in Ecosystems: Principles and Case Studies of Different Complexity Levels[M]. Springer, Netherlands. 1999. [34]Magurran AE . Ecological Diversity and Its Measurement[M]. Princeton University Press, Princeton. 1988. [35]赵同谦, 欧阳志云, 贾良清, 等.中国草地生态系统服务功能间接价值评价[J]. 生态学报, 2004 (06) : 1101-1110. [36]牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报,2007, 31 (02) : 262-271. [37]李英年, 赵亮, 赵新全, 等.5年模拟增温后矮嵩草草地群落结构及生产量的变化[J]. 草地学报, 2004, 12 (3) : 236-239. [38]Rustad LE, Campbell JL, Marion GM,et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126, 543-562.
|