[1] |
SHEMIN D, RUSSELL C S. δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines1[J]. Journal of the American chemical society, 1953, 75(19):4873-4874.
|
[2] |
HAREL E, KLEIN S. Light dependent formation of δ-aminolevulinic acid in etiolated leaves of higher plants[J]. Biochemical and biophysical research communications, 1972, 49(2):364-370.
|
[3] |
SASAKI K, WATANABE M, TANAKA T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid[J]. Applied microbiology and biotechnology, 2002, 58:23-29.
pmid: 11831472
|
[4] |
HUSSAIN Z, QI Q, ZHU J, et al. Protoporphyrin IX-induced phototoxicity: mechanisms and therapeutics[J]. Pharmacology&therapeutics, 2023, 248:108487-108493.
|
[5] |
WANG L, ZHANG J, ZHONG Y, et al. Regulation of 5-aminolevunilic acid and its application in agroforestry[J]. Forests, 2023, 14(9):1857.
|
[6] |
TAN S, CAO J, XIA X, et al. Advances in 5-aminolevulinic acid priming to enhance plant tolerance to abiotic stress[J]. International journal of molecular sciences, 2022, 23(2):702.
|
[7] |
HENDAWY A O, KHATTAB M S, SUGIMURA S, et al. Effects of 5-aminolevulinic acid as a supplement on animal performance, iron status, and immune response in farm animals: a review[J]. Animals, 2020, 10(8):1352.
|
[8] |
YI Y C, SHIH I T, YU T H, et al. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review[J]. Bioresources and bioprocessing, 2021, 13, 8(1):100.
|
[9] |
BEALE S I. The biosynthesis of δ-aminolevulinic acid in Chlorella[J]. Plant physiology, 1970, 45(4):504-506.
|
[10] |
JIANG M, HONG K, MAO Y, et al. Natural 5-aminolevulinic acid: sources, biosynthesis, detection and applications[J]. Frontiers in bioengineering and biotechnology, 2022, 10:841443.
|
[11] |
YAMADA K, SATO D, NAKAMURA T, et al. Unknown biological effects of l-glucose,5-ALA,and PUFA[J]. The journal of physiological sciences, 2017, 67(5):539-548.
|
[12] |
WANG Q, JIA M, LI H, et al. Design of a genetically encoded biosensor for high-throughput screening and engineering 5-aminolevulinic acid hyper-producing Escherichia coli[J]. ACS sustainable chemistry&engineering, 2024, 12(12):4846-4857.
|
[13] |
CHEN J, WANG Y, GUO X, et al. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum[J]. Biotechnology for biofuels, 2020, 13:1-13.
|
[14] |
TAN Z, ZHAO J, CHEN J, et al. Enhancing thermostability and removing hemin inhibition of Rhodopseudomonas palustris 5-aminolevulinic acid synthase by computer-aided rational design[J]. Biotechnology letters, 2019, 41:181-191.
|
[15] |
DING W, WENG H, DU G, et al. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli[J]. Journal of industrial microbiology and biotechnology, 2017, 44(8):1127-1135.
|
[16] |
ZHU C, CHEN J, WANG Y, et al. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli[J]. Biotechnology and bioengineering, 2019, 116(8):2018-2028.
|
[17] |
ZHANG J, WENG H, ZHOU Z, et al. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli[J]. Bioresource technology, 2019, 274:353-360.
|
[18] |
IMI Y, SHIBATA K. Nutritional factors that affect the formation of 5-aminolevulinic acid, a key intermediate of heme biosynthesis[J]. Journal of nutritional science and vitaminology, 2021, 67(5):339-350.
doi: 10.3177/jnsv.67.339
pmid: 34719620
|
[19] |
WINGERT R A, GALLOWAY J L, BARUT B, et al. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis[J]. Nature, 2005, 436(7053):1035-1039.
|
[20] |
GOTOH S, NAKAMURA T, KATAOKA T, et al. Egr-1 regulates the transcriptional repression of mouse delta-aminolevulinic acid synthase 1 by heme[J]. Gene, 2011, 472:28-36.
|
[21] |
WU N, YIN L, HANNIMAN E A, et al. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα[J]. Genes & development, 2009, 23(18):2201-2209.
|
[22] |
MUNAKATA H, SUN J Y, YOSHIDA K, et al. Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase[J]. Journal of biochemistry, 2004, 136(2):233-238.
pmid: 15496594
|
[23] |
TIAN Q, LI T, HOU W, et al. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells[J]. Journal of biological chemistry, 2011, 286(30):26424-26430.
doi: 10.1074/jbc.M110.215772
pmid: 21659532
|
[24] |
HANDSCHIN C, LIN J, RHEE J, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha[J]. Cell, 2005, 122:505-515.
pmid: 16122419
|
[25] |
FRASER D J, PODVINEC M, KAUFMANN M R, et al. Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR)[J]. Journal of biological chemistry, 2002, 277(38):34717-34726.
doi: 10.1074/jbc.M204699200
pmid: 12121995
|
[26] |
FRASER D J, ZUMSTEG A, MEYER U A. Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene[J]. Journal of biological chemistry, 2003, 278(41):39392-39401.
doi: 10.1074/jbc.M306148200
pmid: 12881517
|
[27] |
PODVINEC M, HANDSCHIN C, LOOSER R, et al. Identification of the xenosensors regulating human 5-aminolevulinate synthase[J]. Proceedings of the national academy of sciences, 2004, 101:9127-9132.
|
[28] |
PEOC'H K, NICOLAS G, SCHMITT C, et al. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias[J]. Molecular genetics and metabolism, 2019, 128(3):190-197.
doi: S1096-7192(18)30632-2
pmid: 30737140
|
[29] |
FLEISCHHACKER AS, SARKAR A, LIU L, et al. Regulation of protein function and degradation by heme, heme responsive motifs, and CO[J]. Critical reviews in biochemistry and molecular biology, 2022, 57(1):16-47.
|
[30] |
VOTHKNECHT U C, KANNANGARA C G, VON WETTSTEIN D. Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity[J]. Phytochemistry, 1998, 47(4):513-519.
doi: 10.1016/s0031-9422(97)00538-4
pmid: 9461671
|
[31] |
MESKAUSKIENE R, NATER M, GOSLINGS D, et al. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana[J]. Proceedings of the national academy of sciences of the United States of America, 2001, 98(22):12826-12831.
|
[32] |
CZARNECKI O, HEDTKE B, MELZER M, et al. An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts[J]. Plant cell, 2011, 23(12):4476-4491.
|
[33] |
AGRAWAL S, KARCHER D, RUF S, et al. The functions of chloroplast glutamyl-tRNA in translation and tetrapyrrole biosynthesis[J]. Plant physiology, 2020, 183(1):263-276.
doi: 10.1104/pp.20.00009
pmid: 32071153
|
[34] |
BOUGRI O, GRIMM B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley[J]. The plant journal, 1996, 9(6):867-878.
|
[35] |
MCCORMAC A C, FISCHER A, KUMAR A M, et al. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana[J]. The plant journal, 2001, 25(5):549-561.
|
[36] |
TANAKA R, YOSHIDA K, NAKAYASHIKI T, et al. Differential expression of two HEMA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings[J]. Plant physiology, 1996, 110(4):1223-1230.
pmid: 8934625
|
[37] |
RUD E, GEDERAAS O, HØGSET A, et al. 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters[J]. Photochemistry and photobiology, 2000, 71(5):640-647.
doi: 10.1562/0031-8655(2000)071<0640:aabnaa>2.0.co;2
pmid: 10818796
|
[38] |
XIA R, PENG H F, ZHANG X, et al. Comprehensive review of amino acid transporters as therapeutic targets[J]. International journal of biological macromolecules, 2024, 260(Pt 2):129646.
|
[39] |
DÖRING F, WALTER J, WILL J, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications[J]. The journal of clinical investigation, 1998, 101(12):2761-2767.
|
[40] |
INGERSOLL S A, AYYADURAI S, CHARANIA M A, et al. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease[J]. American journal of physiology-gastrointestinal and liver physiology, 2012, 302(5):G484-G492.
|
[41] |
AHLIN G, HILGENDORF C, KARLSSON J, et al. Endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs[J]. Drug metabolism and disposition, 2009, 37(12):2275-2283.
doi: 10.1124/dmd.109.028654
pmid: 19741037
|
[42] |
FRØLUND S, MARQUEZ O C, LARSEN M, et al. δ-Aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1)[J]. British journal of pharmacology, 2010, 159(6):1339-1353.
|
[43] |
BERMUDEZ MORETTI M, CORREA GARCIA S, et al. δ-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by BETA transporters[J]. British journal of cancer, 2002, 87(4):471-474.
|
[44] |
FUJIWARA T, OKAMOTO K, NIIKUNI R, et al. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia[J]. Biochemical and biophysical research communications, 2014, 454(1):102-108.
doi: 10.1016/j.bbrc.2014.10.050
pmid: 25450364
|
[45] |
SAITO K, FUJIWARA T, OTA U, et al. Dynamics of absorption, metabolism, and excretion of 5-aminolevulinic acid in human intestinal Caco-2 cells[J]. Biochemistry biophysics reports, 2017, 13(11):105-111.
|
[46] |
XIE Y, HU Y, SMITH D E. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid[J]. British journal of pharmacology, 2016, 173(1):167-176.
doi: 10.1111/bph.13356
pmid: 26444978
|
[47] |
ROMAIN M, SVIRI S, LINTON D M, et al. The role of vitamin B12 in the critically ill-a review[J]. Anaesthesia and intensive care, 2016, 44(4):447-452.
|
[48] |
GHARIBZAHEDI S M T, MOGHADAM M, AMFT J, et al. Recent advances in dietary sources, health benefits, emerging encapsulation methods, food fortification, and new sensor-based monitoring of vitamin B12: a critical review[J]. Molecules, 2023, 28(22):7469.
|
[49] |
GUÉANT J L, GUÉANT-RODRIGUEZ R M, KOSGEI V J, et al. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B12 metabolism[J]. Critical reviews in biochemistry and molecular biology, 2022, 57(2):133-155.
|
[50] |
GE Y, ZADEH M, MOHAMADZADEH M. Vitamin B 12 regulates the transcriptional, metabolic, and epigenetic programing in human ileal epithelial cells[J]. Nutrients, 2022, 14:2825.
|
[51] |
SULLIVAN M R, DARNELL A M, REILLY M F, et al. Methionine synthase is essential for cancer cell proliferation in physiological folate environments[J]. Nature metabolism, 2021, 3(11):1500-1511.
doi: 10.1038/s42255-021-00486-5
pmid: 34799701
|
[52] |
SMITH A D, WARREN M J, REFSUM H. Vitamin B12[J]. Advances in food and nutrition research, 2018, 83:215-279.
doi: S1043-4526(17)30041-4
pmid: 29477223
|
[53] |
ZHANG J, CUI Z, ZHU Y, et al. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway[J]. Biotechnology advances, 2022, 55:107904.
|
[54] |
RAGSDALE S W. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane[J]. The metal-driven biogeochemistry of gaseous compounds in the environment, 2014, 14:125-145.
|
[55] |
MARTINS T, BARROS A N, ROSA E, et al. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: a comprehensive review[J]. Molecules, 2023, 28(14):5344.
|
[56] |
LI X, ZHANG W, NIU D, et al. Effects of abiotic stress on chlorophyll metabolism[J]. Plant science, 2024, 342:112030
|
[57] |
DURRETT T P, WELTI R. The tail of chlorophyll: fates for phytol[J]. Journal of biological chemistry, 2021, 296:100802.
|
[58] |
PAREEK S, SAGAR N A, SHARMA S, et al. Chlorophylls: chemistry and biological functions[M]. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition, 2017:269-284.
|
[59] |
PHILLIPS J D, KUSHNER J P. Fast track to the porphyrias[J]. Nature medicine, 2005, 11(10):1049-1050.
pmid: 16211036
|
[60] |
LI M, VIZZARD M A, JAWORSKI D M, et al. The weight loss elicited by cobalt protoporphyrin is related to decreased activity of nitric oxide synthase in the hypothalamus[J]. Journal of applied physiology, 2006, 100(6):1983-1991.
pmid: 16469935
|
[61] |
VOLTARELLI V A, ALVES DE SOUZA R W, MIYAUCHI K, et al. Heme: the lord of the iron ring[J]. Antioxidants (Basel). 2023, 12(5):1074.
|
[62] |
YU F, WANG Z, ZHANG Z, et al. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances[J]. Critical reviews in biotechnology, 2024, 44(7):1422-1438.
|
[63] |
BELOT A, PUY H, HAMZA I, et al. Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy[J]. Liver international, 2024, 44(9):2235-2250.
doi: 10.1111/liv.15965
pmid: 38888238
|
[64] |
BARR I, SMITH A T, SENTURIA R, et al. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein[J]. The journal of biological chemistry, 2011, 286(19):16716-16725.
|
[65] |
MOSURE S A, STRUTZENBERG T S, SHANG J, et al. Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERBβ[J]. Science advances, 2021, 7(5):eabc6479.
|
[66] |
SEBASTIÁN VP, MORENO-TAPIA D, MELO-GONZÁLEZ F, et al. Limited heme oxygenase contribution to modulating the severity of Salmonella enterica serovar typhimurium infection[J]. Antioxidants(Basel), 2022, 24, 11(6):1040.
|
[67] |
PAUL B D, PIEPER A A. Neuroprotective roles of the biliverdin reductase-A/bilirubin Axis in the brain[J]. Biomolecules, 2024, 14(2):155.
|
[68] |
RYTER S W, TYRRELL R M. The heme synthesis and degradation pathways: role in oxidant sensitivity: heme oxygenase has both pro- and antioxidant properties[J]. Free radical biology and medicine, 2000, 28(2):289-309.
|
[69] |
MCCLUNG J A, LEVY L, GARCIA V STEC D E, et al. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: therapeutic implications[J]. Pharmacology&therapeutics, 2022, 231:107975.
|
[70] |
NAMBU S, MATSUI T, GOULDING C W, et al. A new way to degrade heme the mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO[J]. Journal of biological chemistry, 2013, 288(14):10101-10109.
|
[71] |
CONSOLI V, SORRENTI V, GROSSO S, et al. Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions[J]. Biomolecules, 2021, 16, 11(4):589.
|
[72] |
CONNICK J P, REED J R, CAWLEY G F, et al. Heme oxygenase-1 affects cytochrome P450 function through the formation of heteromeric complexes: interactions between CYP1A2 and heme oxygenase-1[J]. Journal of biological chemistry, 2021, 296:100030.
|
[73] |
BORIES G F P, YEUDALL S, SERBULEA V, et al. Macrophage metabolic adaptation to heme detoxification involves CO-dependent activation of the pentose phosphate pathway[J]. Blood, 2020, 136(13):1535-1548.
doi: 10.1182/blood.2020004964
pmid: 32556090
|
[74] |
SILVA R C M C, VASCONCELOS L R, TRAVASSOS L H. The different facets of heme-oxygenase 1 in innate and adaptive immunity[J]. Cell biochemistry and biophysics, 2022, 80(4):609-631.
|
[75] |
COSTA SILVA R C M, CORREA L H T. Heme oxygenase 1 in vertebrates: friend and foe[J]. Cell biochemistry and biophysics, 2022, 80(1):97-113.
|
[76] |
DORÉ S, TAKAHASHI M, FERRIS C D, et al. Bilirubin, formed by activation of heme oxygenase-2,protects neurons against oxidative stress injury[J]. Proceedings of the national academy of sciences of the united states of America, 1999, 96(5):2445-2450.
|
[77] |
MUÑOZ-SÁNCHEZ J, CHÁNEZ-CÁRDENAS M E. A review on hemeoxygenase-2: focus on cellular protection and oxygen response[J]. Oxidative medicine and cellular longevity, 2014, 2014(1):604981.
|
[78] |
WANG J P, JUNG J H, KIM I H. Effects of dietary supplementation with delta-aminolevulinic acid on growth performance,hematological status,and immune responses of weanling pigs[J]. Livestock science, 2011, 140(1-3):131-135.
|
[79] |
CHEN Y J, KIM I H, CHO J H, et al. Effect of δ-aminolevulinic acid on growth performance, nutrient digestibility, blood parameters and the immune response of weanling pigs challenged with Escherichia coli lipopolysaccharide[J]. Livestock science, 2008, 114(1):108-116.
|
[80] |
HENDAWY A O, SHIRAI M, TAKEYA H, et al. Effects of 5-aminolevulinic acid supplementation on milk production, iron status, and immune response of dairy cows[J]. Journal of dairy science, 2019, 102(12):11009-11015.
doi: S0022-0302(19)30860-4
pmid: 31587902
|
[81] |
NANTO-HARA F, OHTSU H. Dietary 5-Aminolevulinic acid alleviates heat stress-induced renal injury in laying hens by improving mitochondrial quality and enhancing antioxidant activity[J]. Antioxidants (Basel), 2025, 14(5):556.
|
[82] |
WANG J P, KIM H J, CHEN Y J, et al. Effects of delta-aminolevulinic acid and vitamin C supplementation on feed intake, backfat, and iron status in sows1[J]. Journal of animal science, 2009, 87(11):3589-3595.
doi: 10.2527/jas.2008-1489
pmid: 19648502
|
[83] |
李敏. 氨基乙酰丙酸对母猪和仔猪机体铁状态的影响[D]. 泰安: 山东农业大学, 2020.
|
[84] |
LEE S I, LI T S, KIM I H. Dietary supplementation of delta-aminolevulinic acid to lactating sows improves growth performance and concentration of iron and hemoglobin of suckling piglets[J]. Indian journal of animal sciences, 2016, 86(7):781-785.
|
[85] |
李军辉. 甘氨酸铁和氨基乙酰丙酸对大鼠和猪铁状况的影响[D]. 泰安: 山东农业大学, 2021.
|
[86] |
WANG J P, KIM I H. Effects of iron injection at birth on neonatal iron status in young pigs from first-parity sows fed delta-aminolevulinic acid[J]. Animal feed science and technology, 2012, 178(3-4):151-157.
|
[87] |
HOSSAIN M M, PARK J W, KIM I H. δ-Aminolevulinic acid, and lactulose supplements in weaned piglets diet: effects on performance, fecal microbiota, and in-vitro noxious gas emissions[J]. Livestock science, 2016, 183:84-91.
|
[88] |
MATEO R D, MORROW J L, DAILEY J W, et al. Use of δ-aminolevulinic acid in swine diet: effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs[J]. Asian-Australasian journal of animal sciences, 2006, 19(1):97-101.
|
[89] |
YAN L, KIM I H. Evaluation of dietary supplementation of delta-aminolevulinic acid and chitooligosaccharide on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weaned pigs[J]. Animal feed science and technology, 2011, 169(3-4):275-280.
|
[90] |
KANG S N, CHU G M, SONG Y M, et al. The effects of replacement of antibiotics with by-products of oriental medicinal plants on growth performance and meat qualities in fattening pigs[J]. Animal science journal, 2012, 83(3):245-251.
doi: 10.1111/j.1740-0929.2011.00942.x
pmid: 22435629
|
[91] |
SATO K, MATSUSHITA K, TAKAHASHI K, et al. Dietary supplementation with 5-aminolevulinic acid modulates growth performance and inflammatory responses in broiler chickens[J]. Poultry science, 2012, 91(7):1582-1589.
doi: 10.3382/ps.2010-01201
pmid: 22700502
|
[92] |
任鋆, 胡文琴, 李桂冠, 等. 氨基乙酰丙酸和柠檬酸对肉鸡生长性能、免疫器官指数和血液指标的影响[J]. 粮食与饲料工业, 2019(5):38-41.
|
[93] |
CHEN Y J, KIM I H, CHO J H, et al. Utilization of delta-aminolevulinic acid for livestock: blood characteristics and immune organ weight in broilers[J]. Journal of animal and feed sciences, 2008, 17(2):215.
|
[94] |
WANG J P, YAN L, LEE J H, et al. Effects of dietary delta-aminolevulinic acid and vitamin C on growth performance, immune organ weight and ferrum status in broiler chicks[J]. Livestock science, 2011, 135(2-3):148-152.
|
[95] |
陈将, 刘娇, 顾红霞, 等. 饲粮添加5-氨基乙酰丙酸对肉鸡生长性能、血常规指标、免疫功能和肠道形态的影响[J]. 动物营养学报, 2024(1):224-234.
doi: 10.12418/CJAN2024.021
|
[96] |
HONG J W, SHIN S O, CHO J H, et al. Effects of dietary delta-aminolevulinic acid on egg production and egg quality in laying hens[J]. Korean journal of poultry science, 2007, 34(3):181-185.
|
[97] |
WANG J P, LEE J H, JANG H D, et al. Effects of δ-aminolevulinic acid and vitamin C supplementation on iron status, production performance,blood characteristics and egg quality of laying hens[J]. Journal of animal physiology and animal nutrition, 2011, 95(4):417-423.
|
[98] |
CHEN Y J, CHO J H, YOO J S, et al. Evaluation of δ-aminolevulinic acid on serum iron status,blood characteristics,egg performance and quality in laying hens[J]. Asian-Australasian journal of animal sciences, 2008, 21(9):1355-1360.
|
[99] |
YAN L, LEE J H, MENG Q W, et al. Evaluation of dietary supplementation of delta-aminolevulinic acid and chito-oligosaccharide on production performance,egg quality and hematological characteristics in laying hens[J]. Asian-Australasian journal of animal sciences, 2010, 23(8):1028-1033.
|
[100] |
PEDROSA-GERASMIO I R, KONDO H, HIRONO I. Dietary 5-aminolevulinic acid enhances adenosine triphosphate production,ecdysis and immune response in Pacific white shrimp, Litopenaeus vannamei (Boone)[J]. Aquaculture research, 2019, 50(4):1131-1141.
|
[101] |
WU Y, LIAO W, DAWUDA M M, et al. 5-Aminolevulinic acid (5-ALA) biosynthetic and metabolic pathways and its role in higher plants:A review[J]. Plant growth regulation, 2019, 87:357-374.
|
[102] |
XU P, LIU J, YI Y, et al. A dew-responsive pectin-based herbicide for enhanced photodynamic inactivation[J]. Carbohydrate polymers, 2024, 15,336:122114.
|
[103] |
LAI C, ZHANG J, LAI G, et al. Targeted regulation of 5-aminolevulinic acid enhances flavonoids, anthocyanins and proanthocyanidins accumulation in Vitis davidii callus[J]. BMC plant biology, 2024, 24(1):1-15.
|
[104] |
RHAMAN M S, IMRAN S, KARIM M M, et al. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress[J]. Plant cell reports, 2021, 40:1451-1469.
doi: 10.1007/s00299-021-02690-9
pmid: 33839877
|
[105] |
AMOR T B, BORTOLOTTO L, JORI G. Porphyrins and related compounds as photoactivatable insecticides.3.Laboratory and field studies[J]. Photochemistry and photobiology, 2000, 71(2):124-128.
|
[106] |
YIN KUN Y K, MA ENBO M E B, XUE CHUNRONG X C R, et al. Insecticidal activities of 5-aminolevulinic acid on Oxya chinensis and effect on three kinds of enzymes[J]. Scientia agricultura sinica, 2008, 41:2003-2007.
|
[107] |
CHENG F, WANG J, SONG Z, et al. Nematicidal effects of 5-aminolevulinic acid on plant-parasitic nematodes[J]. Journal of nematology, 2017, 49(3):168-176.
|
[108] |
KENNEDY J C, POTTIER R H, PROSS D C. Photodynamic therapy with endogenous protoporphyrin: IX:basic principles and present clinical experience[J]. Journal of photochemistry and photobiology b:biology, 1990, 6(1-2):143-148.
|
[109] |
HARADA Y, MURAYAMA Y, TAKAMATSU T, et al. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence imaging for tumor detection: recent advances and challenges[J]. International journal of molecular sciences, 2022, 9;23(12):6478.
|
[110] |
MARCUS S L, DE SOUZA M P. Theranostic uses of the heme pathway in neuro-oncology:protoporphyrin IX (PpIX) and its journey from photodynamic therapy (PDT) through photodynamic diagnosis (PDD) to sonodynamic therapy (SDT)[J]. Cancers, 2024, 16(4):740.
|
[111] |
TAKEDA J, NONAKA M, LI Y, et al. 5-Aminolevulinic acid fluorescence-guided endoscopic surgery for deep-seated intraparenchymal tumors[J]. British journal of neurosurgery, 2023, 23:1-5.
|
[112] |
FONTANA L C, PINTO J G, VITORIO G D S, et al. Photodynamic effect of protoporphyrin IX in gliosarcoma 9l/lacZ cell line[J]. Photodiagnosis and photodynamic therapy, 2022, 37:102669.
|
[113] |
AEBISHER D, SERAFIN I, BATÓG-SZCZĘCH K, et al. Photodynamic therapy in the treatment of cancer—the selection of synthetic photosensitizers[J]. Pharmaceuticals, 2024, 17(7):932.
|
[114] |
BHATTACHARYA D, MUKHOPADHYAY M, SHIVAM K, et al. Recent developments in photodynamic therapy and its application against multidrug resistant cancers[J]. Biomedical materials, 2023, 18(6):10.
|
[115] |
BOHM G C, GÁNDARA L, DI VENOSa G, et al. Photodynamic inactivation mediated by 5-aminolevulinic acid of bacteria in planktonic and biofilm forms[J]. Biochemical pharmacology, 2020, 177:114016.
|
[116] |
ZDUBEK A, MALISZEWSKA I. On the possibility of using 5-aminolevulinic acid in the light-induced destruction of microorganisms[J]. International journal of molecular sciences, 2024, 25(7):3590.
|
[117] |
SAITOH S, OKANO S, NOHARA H, et al. 5-aminolevulinic acid (5-ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice[J]. Plos one, 2018, 13(1):e0189593.
|
[118] |
KITAMURA N, ZHANG S, MOREL J D, et al. Sodium ferrous citrate and 5-aminolevulinic acid improve type 2 diabetes by maintaining muscle and mitochondrial health[J]. Obesity, 2023, 31(4):1038-1049.
|
[119] |
HARA T, KODA A, NOZAWA N, et al. Combination of 5-aminolevulinic acid and ferrous ion reduces plasma glucose and hemoglobin A1c levels in Zucker diabetic fatty rats[J]. FEBS open bio., 2016, 6:515-528.
doi: 10.1002/2211-5463.12048
pmid: 27239432
|
[120] |
REHANI P R, IFTIKHAR H, NAKAJIMA M, et al. Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA)[J]. Journal of diabetes research, 2019, 2019(1):4267357.
|
[121] |
ATAMNA H, KILLILEA D W, KILLILEA A N, et al. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging[J]. Proceedings of the national academy of sciences, 2002, 99(23):14807-14812.
|
[122] |
FUJII C, MIYASHITA K, MITSUISHI M, et al. Treatment of sarcopenia and glucose intolerance through mitochondrial activation by 5-aminolevulinic acid[J]. Scientific reports, 2017, 7(1):4013.
doi: 10.1038/s41598-017-03917-0
pmid: 28638045
|
[123] |
TAMURA Y, KAGA H, ABE Y, et al. Efficacy and safety of 5-aminolevulinic acid combined with iron on skeletal muscle mass index and physical performance of patients with sarcopenia: a multicenter, double-blinded, randomized-controlled trial (5-ALADDIN study)[J]. Nutrients, 2023, 15(13):2866.
|
[124] |
ATAMNA H, LIU J, AMES B N. Heme deficiency selectively interrupts assembly of mitochondrial complex IV in human fibroblasts:relevance to aging[J]. Journal of biological chemistry, 2001, 276(51):48410-48416.
|
[125] |
OGURA S, MARUYAMA K, HAGIYA Y, et al. The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver[J]. BMC research notes, 2011, 4:1-4.
|
[126] |
SHIODA N, YABUKI Y, YAMAGUCHI K, et al. Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome[J]. Nature medicine, 2018, 24(6):802-813.
doi: 10.1038/s41591-018-0018-6
pmid: 29785027
|
[127] |
MATSUO K, YABUKI Y, FUKUNAGA K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats[J]. Neuropharmacology, 2020, 168:107975.
|
[128] |
HIJIOKA M, KITAMURA K, YANAGISAWA D, et al. Neuroprotective effects of 5-aminolevulinic acid against neurodegeneration in rat models of Parkinson's disease and stroke[J]. Journal of pharmacological sciences, 2020, 144(3):183-187.
doi: S1347-8613(20)30077-3
pmid: 32807663
|
[129] |
TANIGUCHI S, ZHU Z, MATSUZAKI M, et al. 5-Aminolevulinic acid improves chicken sperm motility[J]. Animal bioscience, 2021, 34(12):1912.
|
[130] |
GAO P, ZHUANG J, CHEN H, et al. 5-Aminolevulinic acid combined with ferrous iron ameliorates scrotal heat stress-induced spermatogenic damage by enhancing HO-1 expression[J]. Molecular biology reports, 2023, 50(6):4999-5011.
doi: 10.1007/s11033-023-08462-w
pmid: 37086299
|
[131] |
ELGENDY O, KITAHARA G, YAMADA K, et al. 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress[J]. Journal of reproduction and development, 2023, 69(5):261-269.
|