李天来. 番茄幼苗体内的成分与子房心室形成的关系[A]. 中国园艺学会第六届年会论文集(Ⅱ蔬菜)[C]. 北京: 万国学术出版社, 1990:79-83 Asahira T, Hosoki T, Shiny A. K. Regulation of low temperature-induced malformation of tomato fruit by plant growth regulators[J]. Japan. Soc. Hot. Sci, 1982, 50: 468-474. 李天来, 须晖, 郭泳, 孙国娟, 陈伟之. 苗期光照度对番茄畸形果发生的影响[J]. 辽宁农业科学, 1997, 2: 22-25. 李天来. 日光温室番茄多心室型畸形果的综合防止措施[J]. 设施园艺, 1999, 5 (12): 12-13. 陈先知, 李能芳, 朱剑桥, 朱隆静. 苗期夜温对番茄畸形果发生的影响[J]. 四川农业大学学报, 2006, 24(3): 309-354. 张光星, 王靖华. 低温胁迫和氮素营养对番茄畸形果发生的影响[J]. 中国农业科学, 1998. 31(1): 21-26. 李天来, 王平, 须晖等.苗期夜温对番茄畸形果发生的影响[J]. 中国蔬菜, 1997, (1): 1-6. 李悦,李天来,王丹. 番茄花芽分化期茎尖内源激素水平与果实心室数目的相关性研究[J]. 中国农业科学, 2008, 41(9) : 2727-2733 村松安男. らトマトの奇形果に关すゐ研究(第1报)[J]. 静冈县农试研报, 1967, 12: 70-79. 李天来ら. トマトの子房の子室数に关与する生理的要因について[J]. 园学要旨, 1988, 昭63春:298-299. 白鹏威. 结果期不同温度和光照处理对番茄品质的影响[D]. 陕西杨凌:西北农林科技大学, 2010. J.M. Klnet、D Hurdebise、A. Porrmentler、D R. Stoinier. 在光照不足条件下栽培番茄用生长物质处理以促进花序的发育[M]. 邓乃朋. 贵州:贵州农业科学,1980,01:53-57. 李天来, 王平, 郭泳等. 不同番茄品种畸形果发生的比较试验[J]. 中国蔬菜, 1996, 5: 10-14. 刘浩, 孙景生, 段爱旺. 温室滴灌条件下水分亏缺对番茄生长及生理特性的影响[J]. 灌溉排水学报, 2010, 29(3): 53-57. 须晖, 李天来, 郭泳. 苗期营养水平对番茄畸形果发生的影响[J]. 中国蔬菜, 1997, 5: 10-12. 须晖,孙红梅,郭泳,杨丽娟,李天来,房思强. 番茄苗期营养及幼苗茎尖物质含量与畸形果发生的关系[A].中国园艺学会成立70周年纪念优秀论文选编[C]. 北京: 万国学术出版社, 1999, 6: 476-480. Sawhney V. K. and Greyson R. I. Induction of multilocular ovary in tomato by gibberellic acid[J]. Amer. Soc. Hort. Sci, 1971, 96: 196-198. 斋藤 隆. トマト の生育 ならぴに结实 に关 する研究(第16报)[J]. 园学要旨, 1973(秋): 182-183. 斋藤.隆. トマトの生育ならぴに结实に关する研究(第17报)[J]. 园学要旨, 1975(秋): 176-177. Hosoki T. Relationship between endogenous hormone and nutrient levels in shoot apices of tomato and occurrence of fruit malformation and its control by auxin spray and nutritional restrictions[J]. J. Japan. Soc. Hort. Sci, 1985, 54: 351-356. 李天来. 赤霉素对番茄子房心室形成的影响[J]. 沈阳农业大学学报, 1993, 24(3): 131-356. 杨晖, 蒋新龙, 陈先知. 影响番茄花芽分化的因素及与畸形果发生的关系[J]. 长江蔬莱, 2005: 35-37 王海廷. 番茄育种[M]. 上海:上海科学技术出版社,1988. Younis S E A, Omara M K, Hussein M Y. A genetic analysis of fruit characteristics and their interrelationships in the tomato[J]. Assiut Journal of Agricultural Science, 1988, 19(3): 312-324. Romaos BF, Vallejo Cabrera FA, Tavares de Melo PC. Genetic analysis of the character mean fruit weight and its components in a diallel cross[J]. Acta Agronomica Universidad Na-cional de Colombia, 1993, 43: 1-4, 15-29. Vallejo C F A, Huepa BJA. Genetic analysis on days to flower-ing and number of locules per fruit in tomato cultivars[J]. Acta-Agronomica Universidad Nacional de Colombia, 1999, 49: 3-4, 16-23. LI Tian-lai, XU Hui, GUO Yong. Effects of night illumination in seeding stage on the occurrence of malformed tomato fruit[J]. Liaoning Agriculture Sciences, 1997, 2: 22-25. Foolad, M. R. Genome mapping and molecular breeding of tomato[J]. International Journal of Plant Genomics, 2007: 1-52. Lippman Z, Tanksley SD. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small fruited wild species Lycopersicon pimpinellifolium and L.esculentum var. giant heirloom[J]. Genetics, 2001, 158: 413-422. Tanksley SD. The Genetic, Developmental, and Molecular Bases of Fruit Size and Shape Variation in Tomato[J]. Plant Cell, 2004, 16: 181-189. Nesbitt T, Tanksley S. Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes[J]. Genetics, 2002, 162: 365-379. Mu?os, S. et al. Increase in tomato locule number is controlled by two single nucleotide polymorphisms located near WUSCHEL[J]. Plant Physiol. 2011, 156: 2244 - 2254. Hui Li, Tianlai Li et al. Tomato Transcription Factor SlWUS Plays an Important Role in Tomato Flower and Locule Development[J]. Frontiers in Plant Science. 2017, 2244 - 2254. Galli M, Gallavotti A. Expanding the Regulatory Network for Meristem Size in Plants[J].Trends Genet. 2016, 32(6): 372-383. Bollier N, Sicard A, Gonzalez N et al. Induced ovule-to-flower switch by interfering with SlIMA activity in tomato[J]. Plant Signal Behav, 2018, 26: 1-3. Barrero LS, Cong B, Wu F,Tanksley SD. Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato[J].Genome. 2006, 49(8):991-1006. Cong, B., Barrero, L.S. Tanksley, S.D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication[J]. Nat. Genet. 2008, 40: 800 - 804. Huang, Z. van der Knaap, E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11[J]. Theor. Appl. Genet. 2011, 123: 465 - 474. Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu YH, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman ZB. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet. 2015, 47: 784 - 92 . Daniel Rodr?′guez-Leal Zachary H. et al. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing[J]. Cell. 2017, 171: 470 - 480.
|