[1] |
侯威. 后平价时代央企新能源开发与投资管控路径[J]. 能源, 2020, 143(12):95-98.
|
[2] |
凌秀红. 浅析我国农业机械发展现状及趋势[J]. 中文科技期刊数据库(文摘版)工程技术, 2016(9):264-264.
|
[3] |
张银. 农村人口结构变动对粮食生产的影响研究[D]. 荆州: 长江大学, 2016.
|
[4] |
丁声俊. 现代农业走向"三低、两高"[J]. 农家参谋·种业大观, 2012(6):23.
|
[5] |
马江. 循环型农业发展模式探讨[J]. 云南农业大学学报(自然科学), 2005(6):825-828.
|
[6] |
郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015(1):1-11.
|
[7] |
徐亚洋. 陇南山地主要农作物生长季温室气体排放特征及模拟[D]. 兰州: 甘肃农业大学, 2018.
|
[8] |
黄东迈. 有机肥养分循环与利用研究的回顾[J]. 土壤通报, 1994(S1):2-3.
|
[9] |
赵玉海, 张丁丁, 王鑫, 等. 浅谈畜禽粪便、秸秆等有机废弃物肥料化的研究现状[J]. 再生资源与循环经济, 2018, 11(9):15-17.
|
[10] |
刘善江, 薛文涛, 苗万有, 等. 有机肥料行业的特点与发展趋势[J]. 蔬菜, 2018, 336(12):26-29.
|
[11] |
李志坚. 实施节能减排促进化肥行业结构调整[J]. 中国石油和化工经济分析, 2007(19):26-30.
|
[12] |
刘洪涛, 陈同斌, 郑国砥, 等. 有机肥与化肥的生产能耗,投入成本和环境效益比较分析——以污泥堆肥生产有机肥为例[J]. 生态环境学报, 2010, 19(4):1000-1003.
|
[13] |
卢嘉锡, 蔡启瑞, 万惠霖, 等. 生物固氮:全球的挑战和未来的需要[J]. 科学新闻, 2000, 39(39):6-6.
|
[14] |
张容. 基于能值理论的中国种植业系统可持续性发展研究[D]. 四川: 四川农业大学, 2014.
|
[15] |
余露. 农村绿皮书:将农业绿色转型发展提升为国家战略[J]. 农药市场信息, 2016, 561(12):18,31.
|
[16] |
周雷. 施用化肥对农业生态环境的负面影响及对策[J]. 农民致富之友, 2018, 576(7):84.
|
[17] |
陈倩. 基于土地整理的耕地质量评价研究[D]. 北京: 北京林业大学, 2012.
|
[18] |
徐明岗, 卢昌艾, 张文菊, 等. 我国耕地质量状况与提升对策[J]. 中国农业资源与区划, 2016, 37(7):8-14.
|
[19] |
许秀杰. 土壤有机质的含量对土壤的影响及发展前景[J]. 农民致富之友, 2014(15):100.
|
[20] |
谢娟娜, 房琴, 路杨, 等. 增施有机肥提升作物耐盐能力研究[J]. 中国农学通报, 2018, 34(3):42-50.
|
[21] |
张智峰. 中国复合肥发展及养分含量的探讨[J]. 管理观察, 2011(3):205-206.
|
[22] |
唐继伟, 徐久凯, 温延臣, 等. 长期单施有机肥和化肥对土壤养分和小麦产量的影响[J]. 植物营养与肥料学报, 2019, 25(11):1827-1834.
|
[23] |
农传江, 汤利, 徐智, 等. 有机肥部分替代化肥对土壤有机碳库和烤烟经济性状的影响[J]. 中国土壤与肥料, 2016(4):70-75.
|
[24] |
陶磊, 褚贵新, 刘涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报, 2014(21):6137-6146.
|
[25] |
李继业. 化肥养鱼技术[J]. 中国水产, 1996(7):27.
|
[26] |
谢淑娟, 匡耀求, 黄宁生. 中国发展碳汇农业的主要路径与政策建议[J]. 中国人口·资源与环境, 2010, 20(12):46-51.
|
[27] |
王田, 李竟涵. 我国化肥农药利用率最新数据公布说说数字背后的事[J]. 农药市场信息, 2020, 664(1):22.
|
[28] |
井辉. 基于环境保护的农业温室气体减排途径分析[J]. 农业科技与装备, 2015, 256(10):65-66.
|
[29] |
HAVLÍk P, VALIN H, HERRERO M, et al. Climate change mitigation through livestock system transitions[J]. Proceedings of the national academy of sciences of the United States of America, 2014, 111(10):3709-3714.
doi: 10.1073/pnas.1308044111
pmid: 24567375
|
[30] |
MARA F P O. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future[J]. Animal feed science and technology, 2011, 166/167:7-15.
doi: 10.1016/j.anifeedsci.2011.04.074
URL
|
[31] |
AGUIRRE-VILLEGAS H A, LARSON R A. Evaluating greenhouse gas emis-sions from dairy manure management practices using survey data and lifecycle tools[J]. Journal of cleaner production, 2017, 143:169-179.
doi: 10.1016/j.jclepro.2016.12.133
URL
|
[32] |
朱志平, 董红敏, 魏莎, 等. 中国畜禽粪便管理变化对温室气体排放的影响[J]. 农业环境科学学报, 2020, 39(4):87-92.
|
[33] |
宋大利, 侯胜鹏, 王秀斌, 等. 中国畜禽粪尿中养分资源数量及利用潜力[J]. 植物营养与肥料学报, 2018, 24(5):1131-1148.
|
[34] |
田宜水. 解读《农作物秸秆资源调查与评价技术规范》[J]. 农业工程技术(新能源产业), 2009(6):7-13.
|
[35] |
王国强, 孙焕明, 郭琰. 生物炭对CH4和N2O排放的影响综述[J]. 中国农学通报, 2018, 34(27):118-123.
|
[36] |
颜晓元, 夏龙龙. 中国稻田温室气体的排放与减排[J]. 中国科学院院刊, 2015, 30(Z):186-193.
|
[37] |
周胜, 张鲜鲜, 王从, 等. 水分和秸秆管理减排稻田温室气体研究与展望[J]. 农业环境科学学报, 2020, 39(04):196-206.
|
[38] |
徐华, 蔡祖聪, 李小平. 烤田对种稻土壤甲烷排放的影响[J]. 土壤学报, 2000, 37(1):69-76.
|
[39] |
NIE T, CHEN P, ZHANG Z, et al. Effects of irrigation method and rice straw incorporation on CH4 emissions of paddy fields in northeast China[J]. Paddy and water environment, 2020, 18:111-120.
doi: 10.1007/s10333-019-00768-5
URL
|
[40] |
蒋晨, 麻培侠, 胡保国, 等. 生物质炭还田对稻田甲烷的减排效果[J]. 农业工程学报, 2013, 29(15):184-191.
|
[41] |
霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究[J]. 农业工程学报, 2019, 35(13):218-224.
|
[42] |
MINAMIKAWA K, SAKAI N, YAGI K. Methane emission from paddy fields and its mitigation options on a field scale[J]. Microbes and environments, 2006, 21(3):135-147.
doi: 10.1264/jsme2.21.135
URL
|
[43] |
NIE T, CHEN P, ZHANG Z, et al. Effects of different types of water and nitrogen fertilizer management on greenhouse gas emissions, yield, and water consumption of paddy fields in cold region of China[J]. International journal of environmental research and public health, 2019, 16(9):1609-1639.
doi: 10.3390/ijerph16091609
URL
|
[44] |
宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1):1-21.
|
[45] |
石岳峰, 吴文良, 孟凡乔, 等. 农田固碳措施对温室气体减排影响的研究进展[J]. 中国人口资源与环境, 2012(1):43-48.
|
[46] |
SMITH P, COTRUFO M F, RUMPEL C, et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils[J]. Soil discussions, 2015, 2(1):537-586.
|
[47] |
程琨, 潘根兴. “千分之四全球土壤增碳计划”对中国的挑战与应对策略[J]. 气候变化研究进展, 2016, 12(5):457-464.
|
[48] |
Ministry of France. Under the“4 per 1000” initiative[EB/OL]. http//4p1000.org/understand2015,2016-5-20.
|
[49] |
吴金水, 黄习知, 李勇, 等. 亚热带水稻土碳循环的生物地球化学特点与长期固碳效应[J]. 农业现代化研究, 2018, 39(6):895-906.
|
[50] |
YUAN H Z, GE T D, CHEN C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon[J]. Applied and environmental microbiology, 2012, 78(7):2328-2336.
doi: 10.1128/AEM.06881-11
pmid: 22286999
|
[51] |
王树涛, 门明新, 刘微, 等. 农田土壤固碳作用对温室气体减排的影响[J]. 生态环境学报, 2007, 16(6):197-202.
|
[52] |
沈仕洲, 王风, 薛长亮, 等. 施用有机肥对农田温室气体排放影响研究进展[J]. 中国土壤与肥料, 2015, 260(6):1-8.
|
[53] |
邱尧, 刘备, 何霖, 等. 增施生物有机肥对水稻产量和土壤肥力的影响[J]. 中国农学通报, 2020, 36(13):7-11.
|
[54] |
刘瑞. 长期种植苎麻土壤的固碳效应与机制[D]. 长沙: 湖南师范大学, 2020.
|
[55] |
刘海涛, 李静, 李霄, 等. 以有机肥替代化肥可减少温带农田温室气体排放量(英文)[J]. Science Bulletin, 2015(6):598-606.
|
[56] |
陈海心, 孙本华, 冯浩, 等. 应用DNDC模型模拟关中地区农田长期施肥条件下土壤碳含量及作物产量[J]. 农业环境科学学报, 2014, 33(9):1782-1790.
|
[57] |
占爱. 提高养分, 水分吸收的根系形态和生理调控[D]. 咸阳: 西北农林科技大学, 2015.
|
[58] |
阮俊梅, 宋振伟, 王全辉, 等. 中国农田减缓气候变化的潜力与技术途径[J]. 中国农学通报, 2020, 36(5):104-108.
|
[59] |
李波, 张俊飚. 我国农作物碳汇的阶段特征与空间差异研究[J]. 湖北农业科学, 2013, 5(5):1229-1229.
|
[60] |
杜为研, 唐杉, 汪洪, 等. 我国有机肥资源及产业发展现状[J]. 中国土壤与肥料, 2020(3):210-219.
|