欢迎访问《农学学报》,

农学学报 ›› 2025, Vol. 15 ›› Issue (12): 93-102.doi: 10.11923/j.issn.2095-4050.cjas2025-0090

• 农业信息 农业气象 • 上一篇    下一篇

基于冬季典型天气过程的日光温室小气候特征规律研究

张继波1,2(), 程敬雅3, 邹俊丽4, 孙骞5, 张瑶5, 邓宇涵2, 陈辰2, 邱粲2   

  1. 1 山东省气象防灾减灾重点实验室, 济南 250031
    2 山东省气候中心, 济南 250031
    3 德州市气象局, 德州 253078
    4 泰安市气象局, 泰安 271000
    5 济南市气象局, 济南 250102
  • 收稿日期:2025-04-24 修回日期:2025-09-16 出版日期:2025-12-20 发布日期:2025-12-16
  • 作者简介:

    张继波,男,1987年出生,山东青州人,高级工程师,硕士研究生,主要从事农业气象服务及研究。通信地址:250031 山东省济南市天桥区无影山东路11号山东省气候中心,Tel:0531-81603626,E-mail:

  • 基金资助:
    山东省自然科学基金面上项目“日光温室保温被最适覆盖时间预报技术研究(ZR202211260263); 山东省气象局气象科学技术研究项目(重点项目)“基于农田格点数据和用户画像的智慧农业气象服务技术研究(2023sdqxz12)

Research on Microclimate Characteristics Pattern of Solar Greenhouse Based on Typical Winter Weather Process

ZHANG Jibo1,2(), CHENG Jingya3, ZOU Junli4, SUN Qian5, ZHANG Yao5, DENG Yuhan2, CHEN Chen2, QIU Can2   

  1. 1 Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Jinan 250031
    2 Shandong Provincial Climate Center, Jinan 250031
    3 Dezhou Meteorological Bureau, Dezhou, Shandong 253078
    4 Tai’an Meteorological Bureau, Tai’an, Shandong 271000
    5 Jinan Meteorological Bureau, Jinan 250102
  • Received:2025-04-24 Revised:2025-09-16 Online:2025-12-20 Published:2025-12-16

摘要:

本研究以北方节能型日光温室为对象,基于山东省泰安典型日光温室内外同步观测的气象数据,系统分析持续降温、低温胁迫、阴雨寡照及快速升温四类冬季典型情境下温室小气候系统的动态响应特征与调控机理。结果表明:日光温室依托“光—热—土”多维能量传递与保温被隔热协同作用,构建起稳定的热环境屏障,其中晴天条件下温室内外温差显著,凌晨至正午时段最大温差可达28.0℃;阴雨天因辐射减弱致使该差值较晴天减8.2℃。土壤层作为重要蓄热体,其蓄热能力随深度增加而衰减,阴雨天浅层地温变幅明显小于晴天,且土壤温度变化滞后于气温,滞后性随土壤深度增加而增强;持续阴雨条件下,保温被覆盖47 h温室内气温仅下降7.3℃,远小于温室外气温降幅(20.5℃),表明土壤蓄热与保温被隔热是抵御极端降温的核心机制;升温天气中温室呈现“正午热集聚”效应,农业生产中需通过保温被早揭晚盖和通风等农事活动来优化温室蓄热及降湿。研究揭示了温室小气候与外界气象条件、农事管理(如保温被揭盖时序、土壤湿度调控)的互作机制,提出增强温室小气候稳定性的有效手段。研究成果可为设施农业冬季防灾减损及气候资源高效利用提供理论依据与实践指导。

关键词: 冬季, 典型天气过程, 日光温室, 小气候, 特征规律

Abstract:

Based on the meteorological data inside and outside the solar greenhouse in Tai'an City, Shandong Province, this study took northern energy-saving solar greenhouse as the object and systematically analyzed the greenhouse microclimate response law and regulation mechanism under four types of typical winter weather processes, including persistent cooling, low temperature, cloudy and rainy, and warming. The results indicated that: (1) the solar greenhouse maintained thermal stability through the synergistic effect of‘light-heat-soil’ energy transfer and thermal insulation, with the maximum temperature difference between inside and outside of the greenhouse reaching 28.0℃ during sunny days (early morning/noon), and the maximum difference between inside and outside of the greenhouse during cloudy and rainy days being lower than that of sunny days by 8.2℃; (2) soil heat storage capacity decayed with increasing depth, shallow ground temperature variability was significantly smaller on cloudy days than on sunny days, and soil temperature changes lagged behind air temperature, with the lag increasing with increasing soil depth; (3) under persistent overcast conditions, the temperature inside the greenhouse only dropped by 7.3℃ for 47 hours covered by the insulation blanket, which was much smaller than the temperature drop outside the greenhouse (20.5℃), suggesting that soil heat storage and insulation blanket were the core mechanisms for resisting extreme cooling; and (4) in warming weather, greenhouses showed the effect of ‘midday heat concentration’, so agricultural production needed to optimize greenhouse heat storage and humidity reduction through agricultural activities such as early uncovering and late covering of the insulation blanket and ventilation. This study revealed the interactions between the greenhouse microclimate and external meteorological conditions, agricultural management (such as the timing of uncovering the insulation blanket, soil moisture regulation), and proposed effective means to enhance the stability of the greenhouse microclimate. The research results can provide theoretical basis and practical guidance for winter disaster prevention and damage reduction in facility agriculture and efficient utilization of climate resources.

Key words: winter, typical weather processes, solar greenhouse, microclimate, characteristicspatterns