[1] |
郑军辉, 叶素芬, 喻景权. 蔬菜作物连作障碍产生原因及生物防治[J]. 中国蔬菜, 2004(3):57-59.
|
[2] |
李敏, 张丽叶, 张艳江, 等. 酚酸类自毒物质微生物降解转化研究进展[J]. 生态毒理学报, 2019, 14(3):72-78.
|
[3] |
孙海兵, 毛志泉, 朱树华. 环渤海湾地区连作苹果园土壤中酚酸类物质变化[J]. 生态学报, 2011, 31(1):90-97.
|
[4] |
Bai R, Ma F, Liang D, et al. Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia[J]. Journal of Chemical Ecology, 2009, 35(4):488-494.
doi: 10.1007/s10886-009-9615-7
pmid: 19352774
|
[5] |
吴玉光, 肖强. 蔬菜连作障碍的防控技术[J]. 中国蔬菜, 2010(07):23-25.
|
[6] |
王晓辉, 薛泉宏. 阿魏酸降解放线菌的筛选及其降解与拮抗效果研究[J]. 西北农林科技大学学报:自然科学版, 2011, 39(12):153-158.
|
[7] |
孙秀, 王秀峰, 魏珉, 等. 肉桂酸降解真菌的筛选及其降解液对黄瓜种子发芽的影响[J]. 园艺学报, 2014, 41(4):765-772.
|
[8] |
甄文超, 王晓燕, 孔俊英, 等. 草莓根系分泌物和腐解物中的酚酸类物质及其化感作用[J]. 河北农业大学学报, 2004(4):74-78.
|
[9] |
kitazawa H, Asao T, Ban T, et al. Autotoxicity of root exudates from strawberry in hydroponic culture[J]. Jounral of Horticultural Science & Biotechnology, 2005, 80(6):677-680.
|
[10] |
吴凤芝, 黄彩红, 邓旭红. 酚酸类物质对黄瓜幼苗养分吸收的化感作用[J]. 内蒙古农业大学学报:自然科学版, 2007(3):131-133.
|
[11] |
祁国振, 毛志泉, 胡秀娜, 等. 苹果根际自毒物质降解菌的筛选鉴定及降解特性研究[J]. 微生物学通报, 2016, 43(2):330-342.
|
[12] |
黄园勇, 周光明, 尹国通, 等. 植物根际放线菌分离方法初探及根皮苷降解活性分析[J]. 南方农业学报, 2013, 44(1):54-58.
|
[13] |
毛宁, 薛泉宏, 唐明. 2株放线菌对土壤中苯甲酸和对羟基苯甲酸的降解作用[J]. 西北农林科技大学学报:自然科学版, 2010, 38(5):143-148.
|
[14] |
王晓辉. 西瓜自毒物质阿魏酸降解放线菌筛选及其降解效果研究[D]. 杨陵:西北农林科技大学硕士学位论文, 2011:1-3.
|
[15] |
马元元, 陈向向, 李敏, 等. 微小杆菌(Exiguobacterium sp.)对肉桂酸降解行为[J]. 微生物学通报, 2017, 44(9):2079-2088.
|
[16] |
何志刚, 汪仁, 王秀娟, 等. 花生自毒物质降解菌的筛选及其降解效果初步研究[J]. 中国农学通报, 2014, 30(21):224-227.
|
[17] |
中国林业微生物菌种保藏管理中心. 中国林业菌种目录[M]. 北京: 中国农业出版社, 2006: 199.
|
[18] |
东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001:349-398.
|
[19] |
肖蓉, 王媛, 聂园军, 等. 基于高通量测序技术的铬污染农田土壤菌群多样性及修复菌株的筛选[J]. 应用与环境生物学报, 2019, 25(4):933-942.
|
[20] |
Ha S M, Kim C K, Roh J. Application of the whole genome-based bacterial identfication system, TrueBac ID, in clinical isolates which were not identified with three MALDI-TOF M/S systems[J]. Ann Lab Med, 2019, 39(6):530-536.
doi: 10.3343/alm.2019.39.6.530
URL
|
[21] |
谢家仪, 董光军, 刘振英. 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 2005(4):440.
|
[22] |
裴孝伯, 李世诚, 张福墁, 等. 温室黄瓜叶面积计算及其与株高的相关性研究[J]. 中国农学通报, 2005(8):80-82.
|
[23] |
Rovera M, Carlier E, Pasluosta C. Pseudomonas aurantiaca: plant growth promoting traits, secondary metabolites and inoculation response. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions. Strategies and techniques to promote plant growth. Wiley-VCH, Germany[J]. 2008:155-164.
|
[24] |
Kohler J, Caravaca F, Carrasco L, et al. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions[J]. Soil Use And Management, 2006, 22(3):298-304.
doi: 10.1111/sum.2006.22.issue-3
URL
|
[25] |
杨光富, 魏云林. 假单胞菌研究现状及应用前景[J]. 生物技术通报, 2011(01):37-39.
|
[26] |
Guzik U, Gren I, Hupert-Kocurek K, et al. Catechol 1,2-dioxygenase from the new aromatic compounds - Degrading Pseudomonas putida strain N6[J]. International Biodeterioration & Biodegradation, 2011, 65(3):504-512.
|
[27] |
Fujisawa H, Hayaishi O. Protocatechuate 3,4-dioxygenase-crystallization and characterization[J]. Journal of Biological Chemistry, 1968, 243(10):2673-2681.
pmid: 4967959
|
[28] |
Chen S, Guo L, Bai J, et al. Biodegradation of p-hydroxybenzoic acid in soil by Pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil[J]. Plant And Soil, 2015, 389(1-2):197-210.
doi: 10.1007/s11104-014-2360-x
URL
|
[29] |
Waechter-Kristensen B, Sundin P, Jensén P. Degradation of phenolic acids by bacteria isolated from hydroponic tomato culture with circulating nutrient solution[J]. Acta Horticulturae, 1994(381):611-614.
|
[30] |
Skerman V, Mcgowan V, Sneath P. Approved lists of bacterial names[J]. International Journal of Systematic Bacterioloogy, 1980, 30(1):225-420.
|
[31] |
Peix A, Valverde A, Rivas R. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov[J]. Int J Syst Evol Microbiol, 2007(57):1286-1290.
|
[32] |
Park J Y, Oh S A, Anderson A J. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis 06 is differentially regulated by glucose[J]. Letters in Applied Microbiology, 2011(52):532-537.
|
[33] |
Mavrodi D V, Blankenfeldt W, Thomashow L S. Phenazine compounds in fluorescent Pseudomonas spp. Biosynjournal and regulation[J]. Annual Review of Phytopathology, 2006, 44:417-445.
pmid: 16719720
|
[34] |
Pierson L S I, Pierson E A. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes[J]. Applied Microbiology and Biotechnology, 2010, 86(6):1659-1670.
doi: 10.1007/s00253-010-2509-3
pmid: 20352425
|
[35] |
Jiao Z, Wu N, Hale L, et al. Characterisation of Pseudomonas chlororaphis subsp aurantiaca strain Pa40 with the ability to control wheat sharp eyespot disease[J]. Annals of Applied Biology, 2013, 163(3):444-453.
|
[36] |
何延静, 刘海明, 胡洪波, 等. 一株拮抗辣椒疫霉的假单胞菌的分离与鉴定[J]. 微生物学报, 2006(4):516-521.
|
[37] |
黄玲. 绿针假单胞菌GP72中吩嗪抗生素的合成基因簇克隆与产量提高[D]. 上海:上海交通大学, 2010: 17.
|
[38] |
Rosas S, Rovera M, Andre S J A. In: Sorvari S, Toldo O (eds) Proceeding prospects and applications for plant associated microbes.: 1st International conference on plant-microbe interactions: endophytes and biocontrol agents[C]. Lapland, Finland, 2005.
|
[39] |
Susana B R, Nicolás A P, Lorena B G, et al. Efficacy of Pseudomonas chlororaphis subsp. aurantiaca SR1 for improving productivity of several crops[M]. Crop Production Technologies, InTech, 2012:199-210.
|
[40] |
Spencer M, Ryu C M, Yang K Y, et al. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway[J]. Physiological and Molecular Plant Pathology, 2003, 63(1):27-34.
doi: 10.1016/j.pmpp.2003.09.002
URL
|