[1]Liu S L, Pan Y Z, Yang R J, et al. Effects of exogenous NO on mineral nutrition absorption, lipid peroxidation and ATPase of plasma membrane in Catharanthus roseus tissues under cadmium stress. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 445-458.刘柿良, 潘远智, 杨容孑, 等. 外源一氧化氮对镉胁迫下长春花质膜过氧化、ATPas及矿质营养吸收的影响. 植物营养与肥料学报, 2014, 20(2): 445-458. [2]Wang X, Liang C H, Yin Y. Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil. Journal of Soils Sediments Protection Risk Assessment Rem, 2015, 15(7): 1531-1537. [3]Qin Y L, Xiong S J, Xu W H, et al. Effect of nano zeolite on chemical fractions of Cd in soil and uptake by chinese cabbage at different soil pH and cadmium levels. Environmental Science, 2016, 37(10):4030-4043.秦余丽, 熊仕娟, 徐卫红,等. 不同镉浓度及pH条件下纳米沸石对土壤镉形态及大白菜镉吸收的影响. 环境科学, 2016, 37(10):4030-4043. [4]Liu X, Song Q, Tang Y, et al. Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Science of the Total Environment, 2013, 463: 530-540. [5]王萌. 纳米修复剂对溶液中重金属的吸附机制及镉污染土壤修复效果[D]. 中国农业科学院, 2012. [6]Yang L, Li B, Wang C Q, et al. Effect of modified biochars on soil cadmium stabilization in paddy soil suffered from original or exogenous contamination. Environmental Science, 2016, 37(9): 3562-3574.杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应. 环境科学, 2016, 37(9): 3562-3574. [7]Xiong S J, Xu W H, Xie W W, et al. Effect of nano zeolite on chemical fractions of Cd in soil and its uptake by cabbage. Environmental Science, 2015, 36(12):4630-4641.熊仕娟, 徐卫红, 谢文文,等. 纳米沸石对土壤Cd形态及大白菜Cd吸收的影响. 环境科学, 2015, 36(12):4630-4641. [8]Zuo Q Q, Wang S K, Zhao C C, et al. Adsorption and desorption of Cd on nHAP and remediation test on Cd contaminated soil. Environmental Engineering, 2017, 35(3):179-183.左清青, 王烁康, 赵陈晨,等. 纳米羟基磷灰石对镉的吸附解吸及对镉污染土壤修复研究. 环境工程, 2017, 35(3):179-183. [9]Yuan T, Wang Z Y, Gu S K, et al. Effect of combined application of low-level potassium fertilizer with nano-Mg(OH)2 on chinese cabbage quality. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 254-261.袁婷, 王正银, 谷守宽, 等. 低钾配施纳米氢氧化镁对白菜的营养效应研究. 植物营养与肥料学报, 2017, 23(1): 254-261. [10]Fan T B, Nan H, Yao J P, et al. Preparation of high dispersion nano magnesium hydroxide by changing temperature method. Journal of Functional Materials, 2013, 44(3): 424-427.范天博, 南贺, 姚建平,等. 变温结晶法制备高分散性纳米氢氧化镁. 功能材料, 2013, 44(3): 424-427. [11]Hao J W, Chai D L, Yang B J. Adsorption equilibrium and kinetics of adsorbing lead ion on nanoflake magnesium hydroxide. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1127-1132.郝建文, 柴多里, 杨保俊. 片状纳米氢氧化镁吸附铅离子吸附平衡与动力学. 硅酸盐通报, 2012, 31(5): 1127-1132. [12]Lin S Y, Feng Y B. Study on phytoremediation of hyperaccumulators for cadmium, zinc and lead in the multiple contaminated soils. Environmental Engineering, 2017, 35(3): 168-173.林诗悦, 冯义彪. 镉锌铅复合污染土壤的超富集植物修复能力研究. 环境工程, 2017, 35(3): 168-173. [13]Jin H, Germida J J, Walley F L. Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Mycorrhiza, 2013, 23(1): 45-59. [14]Hu J, Tsang W, Wu F, et al. Arbuscular mycorrhizal fungi optimize the acquisition and translocation of Cd and P by cucumber (Cucumis sativus L.) plant cultivated on a Cd-contaminated soil. Journal of soils and sediments, 2016, 16(9): 2195-2202. [15]Li F, Gao P, Duan T Y. Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress. Acta Agrestia Sinica, 2016, 24(3): 491-500.李芳, 高萍, 段廷玉. AM菌根真菌对非生物逆境的响应及其机制. 草地学报, 2016, 24(3): 491-500. [16]Wang F Y, Lin X G. Role of abuscular mycorrhizae in phytoremediation of heavy metal contaminated soils. Acta Ecologica Sinica, 2007, 27(2): 793-801.王发园, 林先贵. 丛枝菌根在植物修复重金属污染土壤中的作用. 生态学报, 2007, 27(2): 793-801. [17]Chen Y Q, Jiang L, Xu W H, et al. Effect of ryegrass and arbuscular mycorrhizal on Cd absorption by varieties of tomatoes and cadmium forms in soil. Environmental Science, 2015, 36(12): 4642-4650.陈永勤, 江玲, 徐卫红, 等. 黑麦草、丛枝菌根对番茄Cd吸收、土壤Cd形态的影响. 环境科学, 2015, 36(12): 4642-4650. [18]Madejón P, Pérezdemora A, Burgos P, et al. Do amended, polluted soils require re-treatment for sustainable risk reduction? Evidence from field experiments. Geoderma, 2010, 159(1):174-181. [19]Sun Y B, Wang P C, Xu Y M, et al. Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality. Environmental Science, 2014, 35(12): 4720-4726.孙约兵, 王朋超, 徐应明,等. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究. 环境科学, 2014, 35(12): 4720-4726. [20]He L L, Shen H, Wang Y, et al. Analysis of genomic DNA methylation level in radish under lead stress. Journal of Nuclear Agricultural Sciences, 2015, 29(7): 1278-1284.何玲莉, 沈虹, 王燕, 等. 铅胁迫下萝卜基因组DNA甲基化分析. 核农学报, 2015, 29(7): 1278-1284. [21]鲁如坤. 土壤农业化学分析方法[M]. 中国农业科技出版社, 2000. [22]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7):844-851. [23]王芳. 不同蔬菜对镉的吸收和累积特点[D]. 中国农业大学, 2005. [24]Xu W H, Wang H X, Wang Z Y, et al. Effects of zinc, cadmium and their combined pollution on nutrient uptake and Zn, Cd accumulation in ryegrass (Lolium perenne L.). Asian Journal of Ecotoxicology, 2006, 1(1): 70-74.徐卫红, 王宏信, 王正银, 等. 锌、镉复合污染对重金属蓄集植物黑麦草养分吸收及锌、镉积累的影响. 生态毒理学报, 2006, 1(1): 70-74. [25]Sun Y Y, Guan P, He S, et al. Effects of Cd stress on Cd accumulation, physiological response and ultrastructure of Lolium multiflorum. Pratacultural Science 2016, 33(8): 1589-1597.孙园园, 关萍, 何杉, 等. 镉胁迫对多花黑麦草镉积累特征, 生理抗性及超微结构的影响. 草业科学, 2016, 33(8): 1589-1597. [26]Jiang L, Yang Y, Xu W H, et al. Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato. Environmental Science, 2014, 35(6):2349-2357.江玲, 杨芸, 徐卫红, 等. 黑麦草-丛枝菌根对不同番茄品种抗氧化酶活性、镉积累及化学形态的影响. 环境科学, 2014, 35(6):2349-2357. [27]Luo P C, Li H, Wang S G. Effect of arbuscular mycorrhiza (AM) on tolerance of cattail to Cd stress in aquatic environment. Environmental Science, 2016, 37(2):750-755.罗鹏程, 李航, 王曙光. 湿生环境中丛枝菌根(AM)对香蒲耐Cd胁迫的影响. 环境科学, 2016, 37(2):750-755. [28]Zhang X S, Meng X Y, Wang W, et al. Effects of arbuscular mycorrhizal fungi on growth of ryegrass seedling in cadmium contaminated soil. Journal of Plant Nutrition and Fertilizer, 2015(6): 122-127.张晓松, 孟祥英, 王薇, 等. 丛枝菌根真菌对镉污染土壤中黑麦草幼苗生长的影响. 中国土壤与肥料, 2015(6): 122-127. [29]江玲. 黑麦草, 丛枝菌根真菌对不同番茄品种 Cd 吸收, 富集的影响[D]. 重庆:西南大学, 2015. [30]Wu S L, Zhang X, Chen B D. Effects of arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum. Asian Journal of Ecotoxicology, 2013, 8(6):847-856.伍松林, 张莘, 陈保冬. 丛枝菌根对土壤-植物系统中重金属迁移转化的影响. 生态毒理学报, 2013, 8(6):847-856. [31]Wang Y B, Yan A L, Zhang X Q, et al. Effect of the growth of Chlorophytum comosum on Cd forms and content in soil. Journal of Soil and Water Conservation, 2010, 24(6): 163-166.王友保, 燕傲蕾, 张旭情, 等. 吊兰生长对土壤镉形态分布与含量的影响. 水土保持学报, 2010, 24(6): 163-166. [32]Li S P, Bi Y L, Kong W P, et al. Effects of the arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Environmental Science, 2013, 34(11): 4455-4459.李少朋, 毕银丽, 孔维平, 等. 丛枝菌根真菌在矿区生态环境修复中应用及其作用效果. 环境科学, 2013, 34(11): 4455-4459. [33]Yang H, Yang Z, Zhou L, et al. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Journal of Environmental Sciences, 2001, 13(3): 368-375. [34]Cáliz J, Montserrat G, Martí E, et al. Emerging resistant microbiota from an acidic soil exposed to toxicity of Cr, Cd and Pb is mainly influenced by the bioavailability of these metals. Journal of Soils Sediments, 2013, 13(2):413-428. [35]Liao J P, Lin X G, Cao Z H, et al. Effect of interactions between arbuscular mycorrhizal fungi and heavy metals on microbial populations and phosphatase activities in the maize rhizosphere. Chinese Journal of Applied and Environmental Biology, 2002, 8(4): 408-413.廖继佩, 林先贵, 曹志洪,等. 丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响. 应用与环境生物学报, 2002, 8(4): 408-413. [36]Zhao Y L, Guo H B, Xue Z W, et al. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield. Chinese Journal of Applied Ecology, 2015, 26(6):1785-1792.赵亚丽, 郭海斌, 薛志伟,等. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015, 26(6):1785-1792. [37]Amballa H, Bhumi N R. Significance of Arbuscular Mycorrhizal Fungi and Rhizosphere Microflora in Plant Growth and Nutrition[M]//Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer Singapore, 2016: 417-452. [38]滕少娜. 黑麦草种植对烟田土壤微生物群落结构的影响[D]. 重庆:西南大学, 2010. [39]郑军. 纳米氢氧化镁/氧化镁的制备及其抗菌性能研究[D]. 武汉:华中科技大学, 2013. [40]Ood W. MgO nanoparticles act as a biocide. Chemical Week, 2002, 164(33): 29-29. [41]Shan H, Su S, Liu R, et al. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure. Environmental Science and Pollution Research, 2016, 23(15): 15208-15217. [42]陈保冬. 丛枝菌根减轻宿主植物锌、镉毒害机理研究[D]. 北京:中国农业大学, 2002. [43]Muthukumar T, Priyadharsini P, Uma E, et al. Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth[M]//Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer New York, 2014: 43-71.
|