[1] Matsuoka Y, Vigouroux Y, Goodman M M, et al. A single domestication for maize shown by multilocus microsatellite genotyping [J]. Proceedings of the National Academy of Sciences of USA, 2002, 99 (9): 6080-6084. [2] 岳玉兰, 朱 敏, 于 雷, 等. 玉米雄穗对产量影响研究进展 [J]. 玉米科学, 2010, 18 (4): 150-152. [3] Brewbaker J L. Diversity and genetics of tassel branch numbers in maize [J]. Crop Science, 2015, 55 (1): 65-78. [4] Geraldi I O, Miranda Filho J B, Vencovsky R. Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives [J]. Maydica, 1985, 30 (1): 1-14. [5] Upadyayula N, Silva H S, Bohn M O, et al. Genetic and QTL analysis of maize tassel and inforescence architecture [J]. Theory Applied Genetics, 2006, 112 (4): 592-606. [6] Gue R, Wasson C. Genetic analysis of tassel size and leaf senescence and their relationship with yield in two tropical low land maize populations [J]. African Crop Science Journal, 1996, 4 (3): 275-281. [7] 曹明秋, 何启志. 玉米雌雄穗分化和叶片生长的相关性及其在生产上的意义 [J]. 新疆农业科技, 1981: 15-21. [8] McSteen P, Laudencia-Chingcuanco D, Colasanti J. A floret by any other name: control of meristem identity in maize [J]. Trends in Plant Science, 2000, 5 (2): 61-66. [9] Bommert P, Satoh-Nagasawa N, Jackson D, et al. Genetics and evolution of inflorescence and flower development in grasses [J]. Plant Cell Physiology, 2005, 46 (1): 69-78. [10] Tanaka W, Pautler M, Jackson D, et al. Grass meristems II: inflorescence architecture, flower development and meristem fate [J]. Plant Cell Physiology, 2013, 54 (3): 313-324. [11] Thompson B E, Hake S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture [J]. Plant Physiology, 2009, 149 (1): 38-45. [12] Schuetzl S H, Mock J J. Genetics of tassel branch number in maize and its implications for a selection program for small tassel size [J]. Theoretical and Applied Genetics, 1978, 53 (6): 265-271. [13] 霍仕平. 玉米雄穗的遗传和相关性研究 [J]. 作物学报, 1993, 19 (6): 515-519. [14] Berke T, Rocheford T. Quantitative trait loci for tassel traits in maize [J]. Crop Science, 1999, 39 (5): 1439-1443. [15] Mickelson S M, Stuber C S, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize [J]. Crop Science, 2002, 42 (6): 1902-1909. [16] 汤华, 严建兵, 黄益勤, 等. 玉米5个农艺性状的QTL定位 [J]. 遗传学报, 2005, 32 (2): 203-209. [17] 高世斌, 赵茂俊, 兰海, 等. 玉米雄穗分枝数与主轴长的QTL鉴定 [J]. 遗传, 2007, 29 (8): 1013-1017. [18] Briggs W H, McMullen M D, Gaut B S, et al. Linkage mapping of domestication loci in a large maize teosinte backcross resource [J]. Genetics, 2007, 177 (3): 1915-1928. [19] 王迪, 李永祥, 王阳, 等. 控制玉米雄穗分枝数目和雄穗重的主效QTL的定位 [J]. 植物学报, 2011, 46 (1): 11-20. [20] Brown P J, Upadyayula N, Mahone G S, et al. Distinct genetic architectures for male and female inflorescence traits of maize [J]. Plos Genetics, 2011, 7 (11): e1002383. [21] 杨钊钊, 李永祥, 刘成, 等. 基于多个相关群体的玉米雄穗相关性状QTL分析 [J]. 作物学报, 2012, 38 (8): 1435-1442. [22] Chen Z L, Wang B B, Dong X M,et al. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population [J]. BMC Genomics, 2014, 15: 433. [23] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel [J]. Plos Genetics, 2014, 10 (9): e1004573. [24] Wu X, Li Y X, Shi Y S, et al. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize [J]. Plant Biotechnology Journal, 2016, 14 (7): 1551-1562. [25] Chen Z J, Yang C, Tang D G, et al. Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize [J]. Journal of Integrative Agriculture, 2017, 16 (7): 1432-1442. [26] Xu G H, Wang X F, Huang C, et al. Complex genetic architecture underlies maize tassel domestication [J]. New Phytologist, 2017, 214 (2): 852-864. [27] 代资举, 王新涛, 杨青, 等. 玉米雄穗分枝数主效QTL定位及qTBN5近等基因系构建 [J]. 作物学报, 2018, http://kns.cnki.net/kcms/detail/11.1809.S.20180611.0555.004.html. [28] Vollbrecht E, Springer P S, Goh L, et al. Architecture of floral branch systems in maize and related grasses [J]. Nature, 2005, 436: 1119-1126. [29] Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize [J]. Nature, 2006, 441: 227-230. [30] Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize [J]. Plant Cell, 2006, 18 (3): 574-585. [31] Long J A, Ohno C, Smith Z R, et al. TOPLESS regulates apical embryonic fate in Arabidopsis [J]. Science, 2006, 312 (5779): 1520-1523. [32] Szemenyei H, Hannon M, Long J A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis [J]. Science, 2008, 319 (5868): 1384-1386. [33] Gallavotti A, Long J A, Stanfield S, et al. The control of axillary meristem fate in the maize ramosa pathway [J]. Development, 2010, 137 (17): 2849-2856. [34] Wu X, Skirpan A, McSteen P. Suppressor of sessile spikelets1 functions in the ramose pathway controlling meristem determinacy in maize [J]. Plant Physiology, 2009, 149 (1): 205-219. [35] Bommert P, Lunde C, Nardmann J, et al. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase [J]. Development, 2005, 132 (6): 1235-1245. [36] Taguchi-Shiobara F, Yuan Z, Hake S, et al. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize [J]. Genes Development, 2001, 15: 2755-2766. [37] Walsh J, Waters C A, Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary [J]. Genes Development, 1998, 12: 208-218. [38] Justine Walsh, Michael Freeling. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex [J]. Plant Journal, 1999, 19 (4): 489-495. [39] Gallavotti A, Zhao Q, Kyozuka J, et al. The role of barren stalk1 in the architecture of maize [J]. Nature, 2004, 432: 630-635. [40] Skirpan A, Culler A H, Gallavotti A, et al. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development [J]. Plant Cell Physiology, 2009, 50 (3): 652-657. [41] 彭华, 何秀静, 高健, 等. 玉米SBP转录因子全基因组鉴定与功能分析[J]. 作物学报, 2016, 42 (2): 201-211. [42] Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries [J]. Development, 2010, 137 (8): 1243-1250. [43] Chuck G, Brown P, Meeley R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation [J]. Proceedings of the National Academy of Sciences USA, 2014, 111 (52): 18775-18780. [44] Zhang D, Sun W, Singh R, et al. GRF-interacting factor1 (gif1) Regulates shoot architecture and meristem determinacy in maize [J]. Plant Cell, 2018, 30: 360-374. [45] Li M F, Zhong W S, Yang F, et al. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture [J]. Plant Cell Physiol, 2018, 59 (3): 448-457. [46] Takagi H, Abe A, Yoshida K, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations [J]. Plant Journal, 2013, 74 (1): 174-183. [47] De Donato M, Peters S O, Mitchell S E, et al. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing [J]. PLoS One, 2013, 8 (5): e62137. [48] Alabady M S, Rogers W L, Malmberg R L. Development of transcriptomic markers for population analysis using restriction site associated RNA sequencing (RAR-seq) [J]. PLoS One, 2015, 10 (8): e0134855. [49] Bommert P, Je B I, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size [J]. Nature, 2013, 502: 555-558.
|