农学学报 ›› 2021, Vol. 11 ›› Issue (11): 98-103.doi: 10.11923/j.issn.2095-4050.cjas2020-0198
所属专题: 马铃薯
• 农业工程/农业机械/生物技术/食品科学 • 上一篇 下一篇
收稿日期:
2020-09-07
修回日期:
2021-01-18
出版日期:
2021-11-20
发布日期:
2021-12-09
通讯作者:
赵海
E-mail:jinyl@cib.ac.cn;zhaohai@cib.ac.cn
作者简介:
靳艳玲,女,1981年出生,内蒙古赤峰人,研究员,博士,研究方向:甘薯产后加工及品质评价。通信地址:610041 四川省成都市人民南路四段九号 中国科学院成都生物研究所,Tel:028-82890733,E-mail: 基金资助:
Jin Yanling1(), Zhao Hai1(), Zeng Fankui2
Received:
2020-09-07
Revised:
2021-01-18
Online:
2021-11-20
Published:
2021-12-09
Contact:
Zhao Hai
E-mail:jinyl@cib.ac.cn;zhaohai@cib.ac.cn
摘要:
中国是世界第一大甘薯生产国,目前甘薯主要加工利用方式为生产淀粉及淀粉制品,但加工过程中伴随淀粉同时产生大量副产物——甘薯渣,因未能得到有效的回收利用而导致了农村面源环境污染,已成为制约甘薯淀粉加工业可持续发展的主要因素之一。为了探讨甘薯渣资源化利用的方式,本文以其基本成分作为切入点,分析了近年来针对甘薯渣中淀粉、纤维、果胶、蛋白质以及全原料开展高值化利用的技术要点、主要产品及应用效果等,并提出了避免二次污染、开展全组分生物炼制、重视可溶性膳食纤维以及着力攻关鲜甘薯渣配套利用技术的建议。
中图分类号:
靳艳玲, 赵海, 曾凡逵. 甘薯淀粉加工废渣的高值化利用研究进展[J]. 农学学报, 2021, 11(11): 98-103.
Jin Yanling, Zhao Hai, Zeng Fankui. Value-added Utilization of Sweet Potato Starch Residue: A Review[J]. Journal of Agriculture, 2021, 11(11): 98-103.
[1] |
Ding Y Y, Shen M Y, Wei D M, et al. Study on compatible characteristics of wheat and purple sweet potato starches[J]. Food Hydrocolloids, 2020, 107:105961.
doi: 10.1016/j.foodhyd.2020.105961 URL |
[2] |
Cui R B, Zhu F. Effect of ultrasound on structural and physicochemical properties of sweetpotato and wheat flours[J]. Ultrasonics Sonochemistry, 2020, 66:105118.
doi: 10.1016/j.ultsonch.2020.105118 URL |
[3] |
Liao L Y, Liu H H, Gan Z P, et al. Structural properties of sweet potato starch and its vermicelli quality as affected by heat-moisture treatment G[J]. International Journal of Food Properties, 2019, 22(1):1122-1133.
doi: 10.1080/10942912.2019.1626418 URL |
[4] | Wang F Z, Jiang Y, Guo W, et al. An Environmentally Friendly and Productive Process for Bioethanol Production from Potato Waste[J]. Biotechnology & Biofuel, 2016, 9:50. |
[5] | Xia J, Shu J Y, Yao K W, et al. Synergism of cellulase, pectinase and xylanase on hydrolyzing differently pretreated sweet potato residues[J]. Preparative Biochemistry & Biotechnology, 2020. 50(2):181-190. |
[6] | Mei X, Mu T H, Han J J. Composition and Physicochemical Properties of Dietary Fiber Extracted from Residues of 10 Varieties of Sweet Potato by a Sieving Method[J]. Journal of Agricultural & Food Chemistry, 2010, 58(12):7305-7310. |
[7] | 沈维亮, 靳艳玲, 丁凡, 等. 甘薯淀粉加工废渣生产蛋白饲料的工艺[J]. 粮食与饲料工业, 2017(12):41-45. |
[8] | 梁新红, 冯龙斐, 王田林, 等. 蒸汽爆破甘薯渣粉对小麦粉粉质及饼干品质特性的影响[J]. 食品科学, 2018, 39(23):60-65. |
[9] |
Arachchige M P M, Mu T H, Ma M M. Structural, physicochemical, and emulsifying properties of sweet potato pectin treated by high hydrostatic pressure and/or pectinase: A comparative study Running title: Comparative study of sweet potato pectin modified by various methods[J]. Journal of the Science of Food and Agriculture,DOI: 10.1002/jsfa.10552.
doi: 10.1002/jsfa.10552 |
[10] |
Huang M H, Cheng J, Chen P, et al. Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate[J]. Journal of Environmental Management, 2019, 237:147-154.
doi: 10.1016/j.jenvman.2019.02.041 URL |
[11] |
Shen N K, Wang Q Y, Zhu, J, et al. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137[J]. Bioresource Technology, 2016, 211:307-312
doi: 10.1016/j.biortech.2016.03.036 URL |
[12] |
Gu X L, Song Z H, Li H, et al. Effects of dietary isomaltooligosaccharide and Bacillus spp. supplementation during perinatalperiod on lactational performance, bloodmetabolites, and milk composition of sows[J]. Journal of the Science of Food and Agriculture, 2019, 99:5646-5653.
doi: 10.1002/jsfa.v99.13 URL |
[13] | 姚明静, 赵祥颖, 张立鹤, 等. 甘薯渣残留淀粉制备低聚异麦芽糖工艺的研究[J]. 食品科技, 2019, 44(8):254-260. |
[14] | 李成圆, 庞林江, 陆国权, 等. 糖化工艺对甘薯渣酶法制备低聚异麦芽糖产量的影响[J]. 食品工业, 2019, 40(1):135-138. |
[15] |
Shen F, Sun S, Yang J R, et al. Coupled Pretreatment with Liquid Nitrogen and Ball Milling for Enhanced Cellulose Hydrolysis in Water[J]. ACS Omega, 2019, 4(7):11756-11759.
doi: 10.1021/acsomega.9b01406 URL |
[16] |
Suzuki S, Takeoka Y, Rikukawa M, et al. Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield[J]. RSC Advanced, 2018, 8:14623-14632.
doi: 10.1039/C8RA01950A URL |
[17] | 王树宁, 冯龙斐, 黄滢洁, 等. 甘薯残渣纤维素酶解工艺研究[J]. 食品研究与开发, 2020, 41(8):179-182. |
[18] | Xia J, Shu J Y, Yao K W, et al. Synergism of cellulase, pectinase and xylanase on hydrolyzing differently pretreated sweet potato residues[J]. Preparative Biochemistry&Biotechnology, 2020, 50(2):181-190. |
[19] | Tan H T, Corbin K R, Fincher G B, et al. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls[J]. Frontiers in Plant Science, 2016, 7:1854. |
[20] | Liu M, Li X Z, Zhou S M, et al. Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile[J]. Food &Function, 2020, 11:689. |
[21] | 孟祥河, 戴建波, 曹艳, 等. 亚临界水提法提高甘薯皮可溶性膳食纤维得率[J]. 农业工程学报, 2019, 35(20):303-310. |
[22] |
Mau J L, Lee C C, Yang C W, et al. Physicochemical, antioxidant and sensory characteristics of bread partially substituted with aerial parts of sweet potato[J]. Lwt-Food Science and Technology, 2020, 117:108602.
doi: 10.1016/j.lwt.2019.108602 URL |
[23] | 张苗, 木泰华, 韩俊娟. 甘薯膳食纤维对馒头品质及老化的影响[J]. 江苏师范大学学报:自然科学版, 2016, 34(4):20-24. |
[24] | 岳瑞雪, 钮福祥, 孙健, 等. 富含甘薯膳食纤维酸奶的发酵工艺研究[J]. 江苏师范大学学报, 2017, 35(4):27-30. |
[25] | Zhang Y, Gu W L, Duan L Q, et al. Protective effect of dietary fiber from sweet potato (Ipomoea batatas L.) against lead-induced renal injury by inhibiting oxidative stress via AMPK/SIRT1/PGC1a signaling pathways[J]. Food Biochemistry, 2018, e12513. |
[26] | Drews A, Kempin M V, Kraume M. First systematic study on the impact of preparation conditions on characteristic Pickering emulsion properties[J]. Chemie Ingenieur Technik, Technik, 2020, 92(9):1295-1295. |
[27] |
Xie Y, Liu H B, Lia Y, et al. Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration[J]. Food Hydrocolloids, 2020, 108:105915.
doi: 10.1016/j.foodhyd.2020.105915 URL |
[28] | World Health Organization & Joint FAO/WHO Expert Committee on Food Additives (82nd, 2016, Geneva, Switzerland). Evaluation of certain food additives: eighty-second report of the Joint FAO/WHO Expert Committee on Food Additives [EB/OL]. https://apps.who.int/iris/bitstream/ handle/10665/250277/9789241210003-eng.pdf?sequence=1&isAllowed=y . 2016 |
[29] | EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen A, Aguilar F, et al. Scientific opinion on the re‐evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives[J]. EFSA J, 2017, 15(7):e4866. |
[30] | 刘倩倩. 甘薯渣果胶超声波辅助盐法提取工艺的优化[J]. 河南农业科学, 2015, 44(9):135-138. |
[31] | Hamidon N H, Zaidel D N A, Jusoh Y M M. Optimization of Pectin Extraction from Sweet Potato Peels using Citric Acid and Its Emulsifying Properties[J]. Recent Patents on Food, Nutrition & Agriculture, 2020, 11:202-210. |
[32] |
Li X, Dong Y, Guo Y, et al. Okra polysaccharides reduced the gelling-required sucrose content in its synergistic gel with high-methoxyl pectin by microphase separation effect[J]. Food Hydrocolloids, 2019, 95:506-516.
doi: 10.1016/j.foodhyd.2019.04.069 URL |
[33] |
Zhang M, Mu T H. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure[J]. Innovative Food Science and Emerging Technologies, 2017, 43:92-101.
doi: 10.1016/j.ifset.2017.08.001 URL |
[34] |
Ju D, Mu T H, Sun H N. Sweet potato and potato residual flours as potential nutritional and healthy food material[J]. Journal of Integrative Agriculture, 2017, 16(11):2632-2645.
doi: 10.1016/S2095-3119(16)61601-5 URL |
[35] |
Li Q J, Xue B, Zhao Y M, et al. In situ degradation kinetics of 6 roughages and the intestinal digestibility of the rumen undegradable protein[J]. Journal of Animal Science, 2018, 96:4835-4844.
doi: 10.1093/jas/sky298 URL |
[36] |
Hu N, Zhang K K, Zhao Y N, et al. Flotation-based dye removal system: Sweet potato protein fabricated from agro-industrial waste as a collector and frother[J]. Journal of Cleaner Production, 2020, 269:122121.
doi: 10.1016/j.jclepro.2020.122121 URL |
[37] |
Hakkak R, Bell A, Korourian S. Dehydroepiandrosterone (DHEA) Feeding Protects Liver Steatosis in Obese Breast Cancer Rat Model[J]. Scientia Pharmaceutica, 2017, 85(1):13.
doi: 10.3390/scipharm85010013 URL |
[38] |
Buttler R M, Martens F, Kushnir M M, et al. Simultaneous measurement of testosterone, androstenedione and dehydroepiandrosterone (DHEA) in serum and plasma using isotope-dilution 2-dimension ultra high performance liquid-chromatography tandem mass spectrometry (ID-LC-MS/MS)[J]. Clinica Chimica Acta, 2015, 438:157-159.
doi: 10.1016/j.cca.2014.08.023 URL |
[39] |
Ran J J, Liang X H, Du H M, et al. Optimization of DHEA Extraction from Sweet Potato Pomace by Ultrasonic-Microwave Synergistic Employing Response Surface Methodology[J]. Journal of AOAC International, 2019, 102(2):680-682.
doi: 10.5740/jaoacint.18-0232 URL |
[40] |
Rafiquzzaman S M, Lee J M, Ahmed R, et al. Characterisation of the hypoglycaemic activity of glycoprotein purified from the edible brown seaweed, Undaria pinnatifida[J]. International Journal of Food Science and Technology, 2015, 50(1):143-150.
doi: 10.1111/ijfs.2015.50.issue-1 URL |
[41] | Xia X J, Li G N, Zheng J, et al. Immune activity of sweet potato (Ipomoea batatas L.) glycoprotein after enzymatic and chemical modifications[J]. Food & Function, 2015, 6:2026. |
[42] |
Tang C, Sun J, Liu J, et al. Immune-enhancing effects of polysaccharides from purple sweet potato[J]. International Journal of Biological Macromolecules, 2019, 123:923-930.
doi: 10.1016/j.ijbiomac.2018.11.187 URL |
[43] |
Wang M M, Ma H, Tian C, et al. Bioassay-guided isolation of glycoprotein SPG-56 from sweet potato Zhongshu-1 and its anti-colon cancer activity in vitro and in vivo[J]. Journal of Functional Foods, 2017, 35:315-324.
doi: 10.1016/j.jff.2017.05.049 URL |
[44] | 刘倩倩. 正交优化甘薯淀粉渣中糖蛋白提取工艺[J]. 山东化工, 2015, 44(13):25-26,30. |
[45] |
Chen X F, Ma X Q, Peng X W, et al. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization[J]. Bioresource Technology, 2018, 249:900-907.
doi: 10.1016/j.biortech.2017.10.096 URL |
[46] |
Chen X F, Ma X Q, Peng X W, et al. Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste[J]. Bioresource Technology, 2018, 267:167-174.
doi: 10.1016/j.biortech.2018.07.032 URL |
[47] |
Wang J J, Peng X W, Chen X F, et al. Co-liquefaction of low-lipid microalgae and starch-rich biomass waste: The interaction effect on product distribution and composition[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139:250-257.
doi: 10.1016/j.jaap.2019.02.013 URL |
[48] | 陈莉, 司慧, 靳峰, 等. 改性甘薯渣对亚甲基蓝的吸附特性及吸附机制[J]. 环境工程学报, 2016, 10(8):4277-4283. |
[49] | 陈莉, 韩甲勋, 姜贞兰, 等. 甘薯渣生物吸附剂对碱基块绿的吸附性能[J]. 食品工业, 2019, 40(8):127-131. |
[50] | 陈莉, 庞婷, 闫瑞, 郑妍, 等. 改性甘薯渣吸附剂的制备及其对Cr6+和 Zn2+的吸附性能[J]. 保鲜与加工, 2019(4):125-130. |
[51] | 高美玲. 甘薯渣中可溶性膳食纤维对肠道菌群的影响[D]. 南昌:南昌大学, 2019. |
[1] | 揭琴, 陶春来, 张恭, 崔绍玉, 石颖, 刘洋, 周健东, 杜德玉. 利用辐射诱变技术创制甘薯新种质[J]. 农学学报, 2021, 11(8): 22-26. |
[2] | 林飞荣, 余继华. 石灰氮防治甘薯茎基部腐烂病试验研究初报[J]. 农学学报, 2021, 11(7): 18-22. |
[3] | 刘也楠, 刘伟明. ‘浙薯255’茎基部腐烂病的抗性及主要栽培技术研究[J]. 农学学报, 2021, 11(5): 22-27. |
[4] | 祖韦军, 潘文杰, 林叶春. 烤烟套种甘薯对烟叶质量、烟薯产量及土壤温湿度的影响[J]. 农学学报, 2020, 10(4): 42-47. |
[5] | 陈路路,孙哲,郝媛媛,田昌庚,张焕利,刘桂玲,郑建利,赵丰玲. 2种淀粉型甘薯生长发育规律及产量、品质差异分析[J]. 农学学报, 2019, 9(9): 11-16. |
[6] | 余继华,林飞荣,石建尧,张敏荣,卢璐,张宁. 台州发现2种新的甘薯病害[J]. 农学学报, 2019, 9(2): 18-23. |
[7] | 刘伟明,刘也楠,何贤彪,黄立飞. 甘薯茎基部腐烂病病原鉴定及药剂防控试验[J]. 农学学报, 2019, 9(12): 9-16. |
[8] | 彭 勇,王雪姣,马玉荣,刘 佩,石晶盈,王庆国. 甘薯贮藏期间抑芽防腐新技术研究[J]. 农学学报, 2018, 8(10): 80-86. |
[9] | 唐维,张允刚,李强,后猛,王欣,闫会,马代夫,刘亚菊. 适合机械化收获的甘薯品种筛选及育种研究[J]. 农学学报, 2017, 7(3): 13-16. |
[10] | 刘伟明,黄立飞,何贤彪,刘也楠. 甘薯茎基部腐烂病防控技术研究[J]. 农学学报, 2017, 7(10): 19-24. |
[11] | 肖和友,邓建功,唐涛. 地沟油燃料烘烤设备在密集烤房中的应用潜力[J]. 农学学报, 2016, 6(11): 53-57. |
[12] | 揭琴,张恭,杜德玉,辛国胜,田金玉. 高产优质甘薯新品种廊烟薯6选育及栽培技术[J]. 农学学报, 2016, 6(1): 25-27. |
[13] | 王常芸,李晓亮,辛国胜,王建玲,王冬梅. 不同品种甘薯茎尖脱毒快繁技术优化研究[J]. 农学学报, 2015, 5(7): 19-23. |
[14] | 郑荔敏. 甘薯测土配方施肥指标体系研究[J]. 农学学报, 2015, 5(5): 19-24. |
[15] | 王容燕,陈书龙,王良平,张菡,范开举,邹祥明. 甘薯蚁象在重庆的发生调查及成灾原因初探[J]. 农学学报, 2015, 5(1): 15-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||