[1] |
吴美婷, 杨晓玉, 罗淋淋, 等. 植物microRNA响应非生物胁迫研究进展[J]. 广东农业科学, 2018,45(03):69-80.
|
[2] |
孙其信. 作物育种学[M]. 北京: 高等教育出版社, 2011: 345-347.
|
[3] |
汤洪, 吕浩正, 杨通洲, 等. 影响水稻结实率的因素及预防对策[J]. 湖南农业科学, 2013(08):17-18,21.
|
[4] |
吴华. 水稻JAZ家族抗逆相关基因的鉴定和功能分析[D]. 武汉:华中农业大学, 2015.
|
[5] |
符德保, 李燕, 肖景华, 等. 中国水稻基因组学研究历史及现状[J]. 生命科学, 2016,28(10):1113-1121.
|
[6] |
Chen W, Gong L, Guo Z, et al. A novel integrated method for large-scale detection, identification and quantification of widely-targeted metabolites: application in study of rice metabolomics[J]. Mol Plant, 2013,6:1769-80.
doi: 10.1093/mp/sst080
URL
|
[7] |
Chen W, Gao Y, Xie W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nat Genet, 2014,46:714-21.
doi: 10.1038/ng.3007
URL
pmid: 24908251
|
[8] |
Du H, Wang N, Cui F, et al. Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synjournal in rice[J]. Plant Physiol, 2010,154:1304-1318.
doi: 10.1104/pp.110.163741
URL
pmid: 20852032
|
[9] |
Yaish M W, El-Kereamy A, Zhu T, et al. The APETALA-2-like transcription factor Os AP2-39 controls key interactions between abscisic acid and gibberellin in rice[J]. PLo S Genet, 2010,6:e1001098.
|
[10] |
肖景华, 吴昌银, 袁猛, 等. 中国水稻功能基因组研究进展与展望[J]. 科学通报, 2015. 60(18):1711-1723.
|
[11] |
唐丁, 吕慧颖, 王珏, 等. 作物基因组学研究进展[J]. 植物遗传资源学报, 2018,19(03):383-389.
|
[12] |
安明. 玉米microRNA159和microRNA168在干旱胁迫下的差异表达[D]. 成都:四川农业大学, 2011.
|
[13] |
盛亮. 植物非生物逆境下miRNA分子调控网络数据库的构建及其在茶树中的应用[D]. 合肥:安徽农业大学, 2013.
|
[14] |
吕明芳. 水稻miR156基因克隆及其功能初步分析[D]. 杭州:浙江师范大学, 2011.
|
[15] |
Li C, Wang G, Zhao J, et al. The receptor-like kinase SIT1mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice[J]. Plant Cell, 2014,26:2538-53.
doi: 10.1105/tpc.114.125187
URL
|
[16] |
马风勇, 朱永兴, 石晓霞, 等. 植物miRNA抗逆性研究进展[J]. 西北农林科技大学学报:自然科学版, 2012,40(05):217-223.
|
[17] |
Schauer S E, Jacobsen S E, Meinke D W, et al. DICER-LIKE1: blind men and elephants in Arabidopsis development[J]. Trends in Plant Science, 2002.
doi: 10.1016/j.tplants.2020.08.011
URL
pmid: 32958388
|
[18] |
周立国. 水稻水分胁迫相关基因克隆及功能验证[D]. 武汉:华中农业大学, 2010.
|
[19] |
Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice[J]. Biochemical and Biophysical Research Communications, 2007,354(2):585-590.
doi: 10.1016/j.bbrc.2007.01.022
URL
pmid: 17254555
|
[20] |
高鹏. 水稻冷胁迫相关miRNA基因的预测及冷胁迫相关性验证[D]. 哈尔滨:东北农业大学, 2008.
|
[21] |
Sunkar R, Chinnusamy V, ZHU J K, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends in Plant Science, 2007,21(7):301-309.
|
[22] |
Jain M, Nijhawan A, Arora R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiol, 2007,143(4):1467-1483.
doi: 10.1104/pp.106.091900
URL
pmid: 17293439
|
[23] |
Jeong D H, Green P J. The role of rice microRNAs in abiotic stress responses[J]. Journal of Plant Biology, 2013,56(4):187-197.
doi: 10.1007/s12374-013-0213-4
URL
|
[24] |
王海波, 王莎莎, 龚明. 植物miRNA的分子特征及其在逆境中的响应机制[J]. 基因组学与应用生物学, 2013,32(01):121-126.
|
[25] |
朱子亮. 利用高通量测序方法检测水稻镉胁迫相关miRNA[D]. 长沙:湖南农业大学, 2017.
|
[26] |
Jeong D H, Green P J. Methods for validation of miRNA sequence variants and the cleavage of their targets[J]. Methods, 2012,58:135-143
doi: 10.1016/j.ymeth.2012.08.005
URL
|
[27] |
朱淑华, 王庆伟, 姚民, 等. 水稻盐胁迫相关内含子microRNA的表达及其生物发生机制[J]. 中国生物化学与分子生物学报, 2017,33(03):294-302.
|
[28] |
彭廷, 文慧丽, 赵亚帆, 等. 盐、干旱胁迫下水稻相关miRNA的鉴定及表达分析[J]. 华北农学报, 2018,33(02):20-27.
|
[29] |
鲁玉柱. 水稻microRNA和其它相关小分子RNA的克隆鉴定[D]. 武汉:武汉大学, 2005.
|
[30] |
Xu G M, Yang X F, Rong Z, et al. Differential Expression of miRNAs in Rice under High Temperature Stress[J]. Agric Biotechnol, 2015,4(4):6-9.
|
[31] |
Morton T, Petricka J, Corcoran D L, et al. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures[J]. Plant Cell, 2014,26(7):2746-2760.
doi: 10.1105/tpc.114.125617
URL
|
[32] |
Liang G, He H, Yu D. Identification of nitrogen starvation responsive microRNAs in Arabidopsis thaliana[J]. PLoS One, 2012,7:e48951.
doi: 10.1371/journal.pone.0048951
URL
pmid: 23155433
|
[33] |
Fujii H, Chiou T J, Lin S I, et al. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Curr Biol, 2005,15:2038-2043.
doi: 10.1016/j.cub.2005.10.016
URL
pmid: 16303564
|
[34] |
Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116:281-297.
doi: 10.1016/s0092-8674(04)00045-5
URL
pmid: 14744438
|
[35] |
Jeong D H, Park S, Zhai J, et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage[J]. Plant Cell, 2011,23:4185-4207.
doi: 10.1105/tpc.111.089045
URL
|
[36] |
彭建斐, 戴良英, 何玉科, 等. 水稻微小RNA研究进展[J]. 湖南农业科学, 2010(15):4-6,10.
|
[37] |
张星. 水稻氮代谢相关基因的鉴定及功能研究[D]. 武汉:华中农业大学, 2013.
|
[38] |
Inês Trindade, Cláudio Capitão, Tamas Dalmay, et al. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula[J]. Planta, 2010(3):705-716.
|
[39] |
Meng Y J, Huang F L, Shi Q Y, et al. Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant[J]. Planta, 2009(5):883-898.
doi: 10.1007/s00425-009-0994-3
URL
|
[40] |
Xiong J, Lu H, Lu K X, et al. Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings[J]. Planta, 2009(4):599-610.
doi: 10.1007/s00425-009-0970-y
URL
|
[41] |
丁艳菲. 水稻镉胁迫应答相关microRNA的分离与功能研究[D]. 杭州:浙江大学, 2012.
|
[42] |
彭廷, 文慧丽, 赵亚帆, 等. 盐、干旱胁迫下水稻相关miRNA的鉴定及表达分析[J]. 华北农学报, 2018,33(02):20-27.
|
[43] |
贾蓓. 水稻miR319的耐冷功能分析与分子机制研究[D]. 哈尔滨:东北农业大学, 2012.
|
[44] |
Liu Q, Zhang Y C, Wang C Y, et al. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling[J]. FEBS Letters, 2009(4):723-728.
doi: 10.1016/j.febslet.2009.01.020
URL
pmid: 19167382
|
[45] |
彭捷. 水稻(Oryza sativa)中Cd和Cu调节的miRNAs表达谱分析及miR602a基因克隆与转化[D]. 南京:南京农业大学, 2009.
|
[46] |
丁艳菲, 朱诚. 水稻镉胁迫诱导microRNA的分离与功能鉴定[A].中国植物生理学会.中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C]. 中国植物生理学会, 2009: 2.
|
[47] |
孔德艳. 水稻抗旱相关miRNAs的克隆及其功能的初步研究[D]. 武汉:华中农业大学, 2010.
|
[48] |
Ding Y F, Zhu C. The role of microRNAs in copper and cadmium homeostasis[J]. Biochemical and Biophysical Research Communications, 2009(1):6-10.
doi: 10.1016/j.bbrc.2010.02.113
URL
pmid: 20171951
|