[1] Donald C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17: 385-403. [2] Yoshida S. Grown and development of the rice plant. In Fundamentals of rice crop Science. Philip pines: IRRI. L Ba?os, 1981:1-61. [3] Shi Z Y, Wang J, Wan X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J].Planta, 2007, 226:99-108. [4] 夏仲炎.粳稻叶型的遗传与选择的研究[J].作物学报,1983,9(4):275-282. [5] 孙旭初.水稻叶型的类别及其与光合作用关系的研究[J].中国农业科学,1985,(4):49-55. [6] 吕川根,宗寿余,邹江石,等.水稻叶片形态因子及其在F1代的遗传[J].作物学报,2005,31(8):1074-1079. [7] Peng, S., Khush, G.S., Cassman, K.G. Evaluation of a new plant ideotype for increased yield potential. In: Cassman, K.G. (Ed.), Breaking the Yield Barrier: Proceedings of a Workshop on Rice Yield Potential in Favourable Environments. International Rice Research Institute, Los Ba?os, Philippines,pp. 1994,5-20. [8] 杨守仁,张龙步,王进民.水稻理想株形育种的理论和方法初论[J].中国农业科学,1984,17(3):6-13. [9] 黄耀祥,林青山.水稻超高产、特优质株型模式的构想与育种实践[J].广东农业科学,1994,(4):l-6. [10] 周开达,马玉清,刘太清.穗重型杂交稻育种[J].四川农业大学学报,1995,13(4):403-407. [11] 袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-6. [12] Tsunoda S. A developmental analysis of yielding ability in varieties of field crops. IV. Quantitative and spatial development of the stem-system[J]. Japanese Journal of Breeding, 1962, 12:49-55. [13] Yoshida S. Physiological aspects of grain yield[J]. Annual Review of Plant Physiol, 1972, 23:437-464. [14] 杨守仁,张龙步,陈温福,等.水稻超高产育种的理论和方法[J].中国水稻科学,1996,10(2):115-120. [15] Murata Y. Studies on the photosynthesis of rice plants and cultural significance. Bull. Natl. Inst. Agric. Sci. Jpn. Ser. D, 1961, 9: 1-169 [16] 林贤青,王雅芬,朱德峰,等. 水稻茎鞘非结构性碳水化合物与穗部性状关系的研究[J]. 中国水稻科学,2001, 15(2):155-157 [17] 林贤青,朱德峰,周伟军,等.超级杂交稻穗分化期叶片比叶重与光合速率的关系[J]. 中国水稻科学, 2003,17(3):281-283 [18] Terashima I, Hanba Y T, Taoze Y, et al. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion[J]. Journal of Experimental Botany, 2006, 57: 343-354. [19] Peng S, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in the tropics[J]. Crop Sci, 1995, 35: 1627-1630. [20] Yoshida S. Fundamentals of rice crop Science. IRRI,L Banos,Philippines, 1981, pp. 1-269. [21] Tanaka A, Kawano K, Yamaguchi J. Photosynthesis, respiration. and plant type of the tropical rice plant. IRRI Tech Bull. 1966, 7: l-46. [22] Sinclair T R, Sheehy J E. Erect leaves and photosynthesis in rice[J]. Science , 1999, 283:1456-1457. [23] 杨建昌,朱庆森,曹显祖. 水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25 (4): 7-14 [24] 周新桥, 张旭, 陈达刚, 等. 华南双季水稻剑叶厚度的初步研究. 中国作物生理第十二次学术研讨会论文集. 重庆. 2010年10月. pp. 32-38 [25] Liu C G, Zhou X Q, Chen D G, et al. Natural Variation of Leaf Thickness and Its Association to Yield Traits in indica Rice[J]. Journal of Integrative Agriculture, 2014, 13 (2): 316-325. [26] Hayashi K, Yamanoto T, Nakagahra M. Genetic control for leaf photosynthesis in rice, Oryza sativa L[J]. Japanese Journal of Breeding, 1977, 27:49-56. [27] 沈福成.水稻剑叶长、宽、角度及比叶重的遗传[J].贵州农业科学,1983,6:18-25. [28] 田少华,夏英武.水稻剑叶面积、厚度的遗传变异研究[J].浙江农业大学学报,1978,13(4):361-368. [29] 马达鹏,陶大云.贵州高原粳稻剑叶长度、宽度、面积及比叶重的遗传研究[J].贵州农业科学,1989,5:1-7. [30] 梁康迳,王雪仁,王乃元,等.水稻冠层叶面积和比叶重的基因型×环境互作效应分析[J].福建农林大学学报(自然科学版),1999,28(4):396-401. [31] Cui K H, Peng S B, Xing Y Z, et al. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice[J]. Theoretical and Applied Genetics,2003,106:649-658. [32] 王一平,曾建平,郭龙彪,等.水稻顶部三叶与穗重的关系及其QTL分析[J].中国水稻科学,2004,19(1):13-20. [33] 彭茂民,杨国华,张菁晶,等.不同遗传背景下水稻剑叶形态性状的QTL分析[J].中国水稻科学,2007,21(3):247-252. [34] 童汉华,梅捍卫,邢永忠,等.水稻生育后期剑叶形态和生理特性的QTL定位[J].中国水稻科学,2007,21(5):493-499. [35] Qi J, Qian Q, Bu Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology,2008,147:1947- 1959. [36] Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics and Genomics,2008,279:499-507. [37] Wang P, Zhou G L, Yu H H, et al. Fine mapping a major QTL for flag leaf size and yield-related traits in rice[J]. Theoretical and Applied Genetics, 2011b, DOI 10. 1007/s00122-011-1669-6. [38] Ding X P, Li X K, Xiong L Z. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number and root volume in rice[J]. Theoretical and Applied Genetics, 2011, 123:815-826. [39] Kanbe T, Sasaki H, Aoki N, et al. Identification of QTLs for improvement of plant type in rice (Oryza sativa L.) Using Koshihikari/Kasalath chromosome segment substitution lines and backcross progeny F2 population[J]. Plant Production Science. 2008,11:447-556. [40] Takai T, Kondo M, Yano M, et al. A Quantitative Trait Locus for Chlorophyll Content and its Association with Leaf Photosynthesis in Rice[J]. Rice, 2010, 3:172-180. [41] 姜树坤,张喜娟,黄成,等.基于粳稻F2和F2:6群体的连锁图谱及剑叶性状QTL比较分析[J].中国水稻科学,2010,24(4):372-378. [42] 李睿,赵姝丽,毛艇,等.水稻剑叶形态性状QTL分析[J].作物杂志,2010,3:26-29. [43] Chen Y D, Zhang X, Zhou X Q, et al. Preliminary studies on thickness of nondestructive rice (Oryza sativa L.) leaf blade[J]. Agri Sci China, 2007, 6 (7): 802-807. [44] 陈友订,黄秋妹,张旭.水稻株型育种[M].上海科学技术出版社,2005:433-438. [45] 陈友订,张旭.华南水稻动态株型研究[M].上海科学技术出版社,2011.
|