[1] 王晓鸣,晋齐鸣,石洁,等. 玉米病害发生现状与推广品种抗性对未来病害发展的影响[J]. 植物病理学报,2006,36 (1):1-11. [2] 吕国忠,陈捷,白金铠,等.我国玉米病害发生现状及防治措施[J].植物保护,1997,23(4):20-21. [3] 傅俊范,李海春,白元俊,等.玉米弯孢菌叶斑病传播梯度模型[J].植物病理学报,2003,33(5):456-461. [4] Xu S F, Chen J, Liu L X, et al. Proteomics associated with virulence differentiation of Curvularia lunata in maize (Zea maydis) in China[J]. Journal Integr Plant Biology, 2007, 49(4): 487-496. [5] Gao S G, Liu T, Li Y Y, et al. Understanding resistant germplasm-induced virulence variation through analysis of proteomics and suppression subtractive hybridization in a maize pathogen Curvularia lunata[J]. Proteomics, 2012, 12(23-24): 3524-3535. [6] Kronstad J, Maria A D, Funnell D, et al. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways [J]. Archives of microbiology, 1998, 170 (6): 395-404. [7] Zhao X H, Kim Y S, Park G S, et al. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea [J]. Plant Cell, 2005, 17 (4): 1317-1329. [8] Hyde G. Calcium imaging: a primer for mycologists[J]. Fungal Genetics and Biology, 1998, 24 (1-2): 14-23. [9] Sakaguchi A, Tsuji G, Kubo Y. A Yeast STE11 Homologue CoMEKK1 is essential for pathogenesis-related morphogenesis in Colletotrichum orbiculare[J]. Molecular Plant-Microbe Interactions, 2010, 23 (12): 1563-1572. [10] IzumitsuSK, YoshimiSA, KuboSD, et al. The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus[J]. Current Genetics, 2009, 55 (4): 439-448. [11] Eliahu N, Igbaria A, Rose M S, et al. Melanin Biosynthesis in the Maize PathogenSCochliobolus heterostrophusSDepends on Two Mitogen-Activated Protein Kinases, Chk1 and Mps1, and the Transcription Factor Cmr1. Eukaryot Cell, 2007, 6 (3): 421-429. [12] Park G, Xue C Y, Zhao X H, et al. Multiple upstream signals converge on an adaptor protein Mst50 to activate the PMK1 pathway in Magnaporthe oryzae. Plant Cell, 2006, 18 (10), 2822-2835. [13] Tucker S, Talbot N. Surface attachment and pre-penetration stage development by plant pathogenic fungi[J]. Annual Review of Phytopathology, 2001, 39 (1): 385-417. [14] Dixon K P, Xu J R, Smirnoff N, et al. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea[J]. Plant Cell, 1999, 11(10):2045-2058. [15] Xu J R, Staiger C J, Hamer J E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. Proceedings of the National Academy of Sciences, 1998, 95 (21):12713-12718. [16] Igbaria A, Lev S, Rose M S, et al. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses[J]. Molecular Plant-Microbe Interactions, 2008, 21 (6): 769-780. [17] Ding S, Zhou X, Zhao X, et al. The PMK1 MAP Kinase Pathway and Infection-Related Morphogenesis[M]. Advances in Genetics, Genomics and Control of Rice Blast Disease, 2009, 13-21. [18] Lev S, Sharon A, Hadar R, et al. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens[J]. Proceedings of the National Academy of Sciences, 1999, 96(23): 13542-13547. [19] Gao S G, Zhou F H, Liu T, et al. A MAP kinase gene, Clk1, is required for conidiation and pathogenicity in the phytopathogenic fungus Curvularia lunata[J]. Journal of basic microbiology, 2013, 53(3): 214-223.
|