农学学报 ›› 2020, Vol. 10 ›› Issue (12): 21-25.doi: 10.11923/j.issn.2095-4050.cjas20190900184
收稿日期:
2019-09-10
修回日期:
2019-10-30
出版日期:
2020-12-20
发布日期:
2020-12-23
通讯作者:
段海燕
E-mail:1162414882@qq.com;1144983024@qq.com
作者简介:
康雪蒙,女,1995年出生,河北张家口人,在读硕士,主要从事水稻分子遗传研究工作。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学现代农业与生态环境学院,Tel:0451-86609487,E-mail: 基金资助:
Kang Xuemeng1(), Ma Mengying1, Gong Wenjing2, Duan Haiyan1()
Received:
2019-09-10
Revised:
2019-10-30
Online:
2020-12-20
Published:
2020-12-23
Contact:
Duan Haiyan
E-mail:1162414882@qq.com;1144983024@qq.com
摘要:
水稻(Oryza sativa L.)粒型包含粒长、粒宽和长宽比等一系列农艺性状,是影响水稻稻米品质和产量的重要因素之一。随着功能基因组学和分子标记技术的发展,越来越多的粒型基因逐渐被定位和克隆。本文主要总结了目前已经克隆的与水稻粒型有关的基因:粒长基因有GS3、GL7、GL3.3等;粒宽基因有GW2、GW5、GS5等;长宽比基因有GW7、TGW3、GS2等,各个基因之间的互作关系以及各个粒型基因在生产中的实际应用。同时,指出了水稻粒型基因在进行分子植物育种时出现的问题并针对相应的问题提出解决建议。
中图分类号:
康雪蒙, 马梦影, 巩文靓, 段海燕. 水稻粒型基因研究进展及应用[J]. 农学学报, 2020, 10(12): 21-25.
Kang Xuemeng, Ma Mengying, Gong Wenjing, Duan Haiyan. Rice Grain Shape Genes: Research Progress and Application[J]. Journal of Agriculture, 2020, 10(12): 21-25.
[1] |
Schruff M C, Spielman M, Tiwari S, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J]. Development, 2006,133(2):251-261.
doi: 10.1242/dev.02194 URL pmid: 16339187 |
[2] |
Ray D K, Ramankutty N, Mueller N D, et al. Recent patterns of crop yield growth and stagnation[J]. Nature communications, 2012,3:1293.
doi: 10.1038/ncomms2296 URL pmid: 23250423 |
[3] |
Xing Y, Zhang Q. Genetic and molecular bases of rice yield[J]. Annual review of plant biology, 2010,61:421-442.
doi: 10.1146/annurev-arplant-042809-112209 URL pmid: 20192739 |
[4] | 石春海. 水稻粒形与优质米育种[J]. 中国农学通报, 1994(01):41-45. |
[5] | 杨联松, 白一松, 张培江, 等. 谷粒形状与稻米品质相关性研究[J]. 杂交水稻, 2001(04):51-53. |
[6] | 徐正进, 陈温福, 马殿荣, 等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报, 2004(09):894-900. |
[7] |
Zuo J, Li J. Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annual Review of Genetics, 2014,48(1):99-118.
doi: 10.1146/annurev-genet-120213-092138 URL |
[8] | 杨维丰, 詹鹏麟, 林少俊, 等. 水稻粒形的遗传研究进展[J]. 华南农业大学学报, 2019(05):1-8. |
[9] | 林鸿宣, 黄宁. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J]. 中国农业科学, 1995,28(4):1-7. |
[10] |
Huang R, Jiang L, Zheng J, et al. Genetic bases of rice grain shape: so many genes, so little known[J]. Trends in plant science, 2013,18(4):218-226.
doi: 10.1016/j.tplants.2012.11.001 URL pmid: 23218902 |
[11] | 熊振民, 孔繁林. 大粒型水稻品种的遗传动态及其选育[J]. 浙江农业科学, 1976(02):26-29. |
[12] | 石春海, 申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析[J]. 作物学报, 1996(01):36-42. |
[13] | 邱先进, 袁志华, 何文静, 等. 水稻粒型基因克隆与分子育种研究进展[J]. 湖北农业科学, 2014,53(13):2977-2980. |
[14] | 宫李辉, 高振宇, 马伯军, 等. 水稻粒形遗传的研究进展[J]. 植物学报, 2011,46(06):597-605. |
[15] |
Wan X Y, Wan J M, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects[J]. Theoretical and Applied Genetics, 2006,112(7):1258-1270.
doi: 10.1007/s00122-006-0227-0 URL |
[16] |
Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006,112(6):1164-1171.
doi: 10.1007/s00122-006-0218-1 URL |
[17] |
Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010,107(45):19579-19584.
doi: 10.1073/pnas.1014419107 URL |
[18] | 王跃星. 水稻粒形基因GL7的克隆、功能研究及育种利用[D]. 北京:中国农业科学院, 2015. |
[19] |
Lee Y K, Kim G, Kim I, et al. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis[J]. Development, 2006,133(21):4305-4314.
doi: 10.1242/dev.02604 URL pmid: 17038516 |
[20] |
Wang Y, Xiong G, Hu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature genetics, 2015,47(8):944.
doi: 10.1038/ng.3346 URL pmid: 26147619 |
[21] |
Xia D, Zhou H, Liu R, et al. GL3. 3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular plant, 2018,11(5):754-756.
doi: 10.1016/j.molp.2018.03.006 URL pmid: 29567448 |
[22] |
Zhang X, Wang J, Huang J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences, 2012,109(52):21534-21539.
doi: 10.1073/pnas.1219776110 URL |
[23] |
Gao X, Zhang J, Zhang X, et al. Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling[J]. The Plant Cell, 2019,31(5):1077-1093.
doi: 10.1105/tpc.18.00836 URL pmid: 30923230 |
[24] |
Liu Q, Han R, Wu K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature communications, 2018,9(1):852.
doi: 10.1038/s41467-018-03047-9 URL pmid: 29487282 |
[25] |
Song X, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature genetics, 2007,39(5):623.
doi: 10.1038/ng2014 URL pmid: 17417637 |
[26] |
Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature genetics, 2008,40(8):1023.
doi: 10.1038/ng.169 URL pmid: 18604208 |
[27] |
Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell research, 2008,18(12):1199.
doi: 10.1038/cr.2008.307 URL pmid: 19015668 |
[28] |
Liu J, Chen J, Zheng X, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature plants, 2017,3(5):17043.
doi: 10.1038/nplants.2017.43 URL |
[29] |
Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature genetics, 2011,43(12):1266.
doi: 10.1038/ng.977 URL pmid: 22019783 |
[30] |
Xu C, Liu Y, Li Y, et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of experimental botany, 2015,66(9):2611-2623.
doi: 10.1093/jxb/erv058 URL pmid: 25711711 |
[31] |
Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature genetics, 2012,44(8):950.
doi: 10.1038/ng.2327 URL |
[32] | 王少奎. 水稻粒宽基因GW8的图位克隆及功能分析[Z]. 万方数据资源系统, 2012. |
[33] |
Shi C, Ren Y, Liu L, et al. Ubiquitin Specific Protease 15 Has an Important Role in Regulating Grain Width and Size in Rice[J]. Plant physiology, 2019,180(1):381-391.
doi: 10.1104/pp.19.00065 URL pmid: 30796160 |
[34] | 师翠兰. 水稻粒型调控基因OsUBP15的图位克隆与功能分析[D]. 北京:中国农业科学院, 2019. |
[35] |
Wang S, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature genetics, 2015,47(8):949.
doi: 10.1038/ng.3352 URL pmid: 26147620 |
[36] |
Ying J, Ma M, Bai C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular plant, 2018,11(5):750-753.
doi: 10.1016/j.molp.2018.03.007 URL pmid: 29567450 |
[37] |
Hu J, Wang Y, Fang Y, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular plant, 2015,8(10):1455-1465.
doi: 10.1016/j.molp.2015.07.002 URL pmid: 26187814 |
[38] | 尉鑫, 曾智锋, 杨维丰, 等. 水稻粒形遗传调控研究进展[J]. 安徽农业科学, 2019,47(05):21-28. |
[39] |
Yan S, Zou G, Li S, et al. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and applied genetics, 2011,123(7):1173.
doi: 10.1007/s00122-011-1657-x URL |
[40] |
Sun S, Wang L, Mao H, et al. A G-protein pathway determines grain size in rice[J]. Nature communications, 2018,9(1):851.
doi: 10.1038/s41467-018-03141-y URL pmid: 29487318 |
[41] |
Peleman J D, Van der Voort J R. Breeding by design[J]. Trends in plant science, 2003,8(7):330-334.
doi: 10.1016/S1360-1385(03)00134-1 URL pmid: 12878017 |
[42] | 余泓, 王冰, 陈明江, 等. 水稻分子设计育种发展与展望[J]. 生命科学, 2018,30(10):1032-1037. |
[43] | 张剑霞. 利用分子标记辅助选择转移野生稻增产QTL和聚合水稻优良基因[D]. 武汉:华中农业大学, 2009. |
[44] | 伍豪, 高利军, 黄娟, 等. 水稻粒长粒重主效基因GS3的功能标记开发与利用[J]. 西南农业学报, 2019,32(06):1211-1215. |
[45] | 李扬, 徐小艳, 严明, 等. 利用GS3基因功能性分子标记改良水稻粒型的研究[J]. 上海农业学报, 2016,32(01):1-5. |
[46] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017,31(06):665-672. |
[47] | 薛勇彪, 韩斌, 种康, 等. 水稻分子模块设计研究成果与展望[J]. 中国科学院院刊, 2018,33(09):900-908. |
[48] | 黄睿. 水稻新品种——中科804[J]. 农村新技术, 2019(03):41. |
[49] |
Zeng D, Tian Z, Rao Y, et al. Rational design of high-yield and superior-quality rice[J]. Nature plants, 2017,3(4):17031.
doi: 10.1038/nplants.2017.31 URL |
[50] |
Wang J, Van Ginkel M, Podlich D, et al. Comparison of two breeding strategies by computer simulation[J]. Crop Science, 2003,43(5):1764-1773.
doi: 10.2135/cropsci2003.1764 URL |
[51] |
Wang J, Eagles H A, Trethowan R, et al. Using computer simulation of the selection process and known gene information to assist in parental selection in wheat quality breeding[J]. Australian Journal of Agricultural Research, 2005,56(5):465-473.
doi: 10.1071/AR04285 URL |
[52] | 郭龙彪, 程式华, 钱前. 水稻基因设计育种的研究进展与展望[J]. 中国水稻科学, 2008(06):650-657. |
[53] |
Qian Q, Guo L, Smith S M, et al. Breeding high-yield superior quality hybrid super rice by rational design[J]. National Science Review, 2016,3(3):283-294.
doi: 10.1093/nsr/nww006 URL |
[1] | 何迷, 李小波, 黄静, 黄光福. 水稻叶面积指数与产量关系研究进展[J]. 农学学报, 2022, 12(8): 1-5. |
[2] | 严羽, 王维建, 姚宇阗, 陈宸, 仇俊, 张晓伟, 陈夕军. 几种生物制剂对有机水稻稻瘟病的防效及产量和品质的影响[J]. 农学学报, 2022, 12(7): 5-11. |
[3] | 张进忠. 百合GBSS基因RNAi载体构建[J]. 农学学报, 2022, 12(7): 69-73. |
[4] | 高飞雨. 转基因技术生物安全管理机制发展的对策与建议[J]. 农学学报, 2022, 12(7): 89-93. |
[5] | 周华兴, 段国庆, 江河, 凌俊, 胡玉婷. 中华绒螯蟹养殖群体与野生群体的种群遗传学研究[J]. 农学学报, 2022, 12(6): 55-59. |
[6] | 于艳敏, 闫平, 武洪涛, 刘海英, 徐振华, 张书利, 吴立成, 杨忠良. 黑龙江省2019年新育成水稻品种品质性状分析[J]. 农学学报, 2022, 12(4): 1-5. |
[7] | 刘晓月, 张燕, 葛燚, 刘能斌, 刘卫国. 常用矿物质材料对镉钝化稳定性研究[J]. 农学学报, 2022, 12(3): 40-43. |
[8] | 伍健缤, 陈坤豪, 陈木溪, 陈长明. 芸薹属蔬菜游离小孢子培养研究进展[J]. 农学学报, 2022, 12(3): 44-49. |
[9] | 方克明, 肖欣, 江麟, 秦蕾影, 王美玲, 张露, 汪璐, 罗文汉, 章明. “籼改粳”稻产势与化肥减量增效方法试验效果[J]. 农学学报, 2022, 12(12): 12-17. |
[10] | 刘维, 刘芳丹, 陆展华, 卢东柏, 王石光, 王晓飞, 薛皦, 何秀英. 水稻细条病的发生发展及抗病基因研究进展[J]. 农学学报, 2022, 12(10): 15-20. |
[11] | 张慧颖, 王颖, 韩成贵. 转基因技术在中国主要粮食作物改良中的研究进展[J]. 农学学报, 2022, 12(10): 44-50. |
[12] | 李显富, 杨惠, 安雪琴, 王陈梓骏, 戴秀梅, 张建奎. 烤烟新品系‘狮柳烟’的特征特性及SSR分子标记鉴定[J]. 农学学报, 2022, 12(1): 28-34. |
[13] | 张慧, 余端, 卢文才, 马连杰, 廖敦秀. 不同减氮施肥模式对水稻土壤养分及可培养微生物数量的影响[J]. 农学学报, 2021, 11(9): 33-37. |
[14] | 毛伟, 李文西, 赵雨涵, 陈明, 徐迅燕, 王长松, 王娟娟, 钱晓晴. 有机肥替代部分化肥对水稻产量及土壤理化性质的影响[J]. 农学学报, 2021, 11(8): 32-36. |
[15] | 刘传和, 贺涵, 邵雪花, 赖多, 匡石滋, 肖维强, 何秀古. 菠萝品种选育与栽培技术研究进展[J]. 农学学报, 2021, 11(8): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||