农学学报 ›› 2021, Vol. 11 ›› Issue (5): 74-82.doi: 10.11923/j.issn.2095-4050.cjas2020-0059
所属专题: 生物技术
• 农业工程/农业机械/生物技术/食品科学 • 上一篇 下一篇
高豪(), 满夏夏, 孙朝霞, 韩渊怀, 李红英, 侯思宇, 郭数进()
收稿日期:
2020-04-09
修回日期:
2020-06-28
出版日期:
2021-05-20
发布日期:
2021-06-29
通讯作者:
郭数进
E-mail:haichongqishi@163.com;sxndgsj@163.com
作者简介:
高豪,男,1992年出生,四川三台人,在读硕士,研究方向:种质创新与遗传育种研究。通信地址:030801 山西省晋中市太谷县山西农业大学农学院,Tel:0354-6288344,E-mail: 基金资助:
Gao Hao(), Man Xiaxia, Sun Zhaoxia, Han Yuanhuai, Li Hongying, Hou Siyu, Guo Shujin()
Received:
2020-04-09
Revised:
2020-06-28
Online:
2021-05-20
Published:
2021-06-29
Contact:
Guo Shujin
E-mail:haichongqishi@163.com;sxndgsj@163.com
摘要:
本研究旨在深入了解谷子叶酸转运家族成员的基因结构和表达模式,为谷子体内叶酸转运分子机制的研究奠定基础。使用Phytozome、Clustal X、MEGA7.0等在线工具和软件,对谷子MRP家族成员进行生物信息学分析;基于谷子谷穗有参转录组测序数据,分析谷子MRP家族成员表达模式。结果显示,谷子MRP蛋白家族成员共21个,在7号染色体分布最多,有8个基因;17个谷子MRP蛋白偏碱性和4个偏酸性,根据疏水值判断其均为亲水性蛋白;成员SiMRP7、SiMRP12基因的表达量与谷子组织中的总叶酸含量表现出协同降低的趋势,推测这两个蛋白可能对谷子叶酸的积累起到调控作用。本研究有助于进一步鉴定叶酸转运相关蛋白,为后续研究叶酸代谢途径及谷子基因挖掘提供了理论基础。
中图分类号:
高豪, 满夏夏, 孙朝霞, 韩渊怀, 李红英, 侯思宇, 郭数进. 谷子MRP蛋白家族序列特征、分子进化及表达模式分析[J]. 农学学报, 2021, 11(5): 74-82.
Gao Hao, Man Xiaxia, Sun Zhaoxia, Han Yuanhuai, Li Hongying, Hou Siyu, Guo Shujin. MRP Protein Family of Foxtail Millet: Analysis of Sequence Characteristics, Molecular Evolution and Expression Pattern[J]. Journal of Agriculture, 2021, 11(5): 74-82.
基因名称 | 基因ID | 基因序列长度/bp | 氨基酸(aa) | 等电点/PI | 不稳定系数 | 平均疏水性 |
---|---|---|---|---|---|---|
SiMRP1 | Seita.1G055500 | 9385 | 1244 | 7.91 | 40.54 | 0.045 |
SiMRP2 | Seita.1G055700 | 6343 | 1250 | 6.78 | 42.35 | 0.102 |
SiMRP3 | Seita.1G190900 | 6878 | 1240 | 8.66 | 37.64 | 0.106 |
SiMRP4 | Seita.1G191000 | 4984 | 1260 | 6.62 | 40.66 | 0.129 |
SiMRP5 | Seita.1G191100 | 6138 | 635 | 8.54 | 38.26 | 0.137 |
SiMRP6 | Seita.1G191200 | 4413 | 1214 | 8.59 | 40.46 | 0.136 |
SiMRP7 | Seita.1G280600 | 11191 | 1257 | 9.32 | 39.36 | 0.118 |
SiMRP8 | Seita.2G374400 | 5307 | 1259 | 8.34 | 42.34 | 0.072 |
SiMRP9 | Seita.4G047900 | 15870 | 1465 | 7.46 | 41.88 | 0.276 |
SiMRP10 | Seita.5G163300 | 17930 | 1609 | 7.18 | 38.02 | 0.180 |
SiMRP11 | Seita.5G185300 | 9254 | 1447 | 8.25 | 38.46 | 0.179 |
SiMRP12 | Seita.6G253500 | 7029 | 1355 | 8.91 | 38.00 | 0.099 |
SiMRP13 | Seita.7G039700 | 8783 | 1530 | 5.86 | 37.72 | 0.211 |
SiMRP14 | Seita.7G039900 | 7753 | 1544 | 5.38 | 37.76 | 0.161 |
SiMRP15 | Seita.7G043600 | 9352 | 1521 | 8.91 | 36.72 | 0.078 |
SiMRP16 | Seita.7G076700 | 7041 | 1539 | 8.69 | 38.90 | 0.028 |
SiMRP17 | Seita.7G076800 | 7212 | 1534 | 8.46 | 40.60 | 0.026 |
SiMRP18 | Seita.7G123300 | 6915 | 1258 | 8.56 | 36.32 | 0.155 |
SiMRP19 | Seita.7G216700 | 8049 | 1603 | 8.31 | 42.73 | 0.044 |
SiMRP20 | Seita.7G258700 | 6595 | 1264 | 8.46 | 35.65 | 0.127 |
SiMRP21 | Seita.9G543800 | 6977 | 1507 | 8.48 | 45.28 | 0.175 |
SvNAC205 | Sevir.9G576300.1. | 9 | 55615117-55617062 |
基因名称 | 基因ID | 基因序列长度/bp | 氨基酸(aa) | 等电点/PI | 不稳定系数 | 平均疏水性 |
---|---|---|---|---|---|---|
SiMRP1 | Seita.1G055500 | 9385 | 1244 | 7.91 | 40.54 | 0.045 |
SiMRP2 | Seita.1G055700 | 6343 | 1250 | 6.78 | 42.35 | 0.102 |
SiMRP3 | Seita.1G190900 | 6878 | 1240 | 8.66 | 37.64 | 0.106 |
SiMRP4 | Seita.1G191000 | 4984 | 1260 | 6.62 | 40.66 | 0.129 |
SiMRP5 | Seita.1G191100 | 6138 | 635 | 8.54 | 38.26 | 0.137 |
SiMRP6 | Seita.1G191200 | 4413 | 1214 | 8.59 | 40.46 | 0.136 |
SiMRP7 | Seita.1G280600 | 11191 | 1257 | 9.32 | 39.36 | 0.118 |
SiMRP8 | Seita.2G374400 | 5307 | 1259 | 8.34 | 42.34 | 0.072 |
SiMRP9 | Seita.4G047900 | 15870 | 1465 | 7.46 | 41.88 | 0.276 |
SiMRP10 | Seita.5G163300 | 17930 | 1609 | 7.18 | 38.02 | 0.180 |
SiMRP11 | Seita.5G185300 | 9254 | 1447 | 8.25 | 38.46 | 0.179 |
SiMRP12 | Seita.6G253500 | 7029 | 1355 | 8.91 | 38.00 | 0.099 |
SiMRP13 | Seita.7G039700 | 8783 | 1530 | 5.86 | 37.72 | 0.211 |
SiMRP14 | Seita.7G039900 | 7753 | 1544 | 5.38 | 37.76 | 0.161 |
SiMRP15 | Seita.7G043600 | 9352 | 1521 | 8.91 | 36.72 | 0.078 |
SiMRP16 | Seita.7G076700 | 7041 | 1539 | 8.69 | 38.90 | 0.028 |
SiMRP17 | Seita.7G076800 | 7212 | 1534 | 8.46 | 40.60 | 0.026 |
SiMRP18 | Seita.7G123300 | 6915 | 1258 | 8.56 | 36.32 | 0.155 |
SiMRP19 | Seita.7G216700 | 8049 | 1603 | 8.31 | 42.73 | 0.044 |
SiMRP20 | Seita.7G258700 | 6595 | 1264 | 8.46 | 35.65 | 0.127 |
SiMRP21 | Seita.9G543800 | 6977 | 1507 | 8.48 | 45.28 | 0.175 |
SvNAC205 | Sevir.9G576300.1. | 9 | 55615117-55617062 |
基因名称 | α螺旋 | 延伸链 | β折叠 | 无规则卷曲 |
---|---|---|---|---|
SiMRP1 | 52.33% | 17.20% | 5.71% | 24.76% |
SiMRP2 | 50.56% | 17.04% | 6.00% | 26.40% |
SiMRP3 | 51.05% | 17.34% | 6.61% | 25.00% |
SiMRP4 | 50.48% | 16.90% | 6.03% | 26.59% |
SiMRP5 | 48.98% | 18.74% | 9.92% | 22.36% |
SiMRP6 | 51.57% | 17.22% | 5.93% | 25.29% |
SiMRP7 | 51.79% | 16.47% | 5.73% | 26.01% |
SiMRP8 | 50.28% | 17.24% | 6.04% | 26.45% |
SiMRP9 | 55.70% | 13.86% | 4.30% | 26.14% |
SiMRP10 | 47.36% | 17.09% | 5.53% | 30.02% |
SiMRP11 | 54.32% | 14.24% | 5.53% | 25.92% |
SiMRP12 | 47.90% | 15.42% | 5.90% | 30.77% |
SiMRP13 | 51.31% | 15.03% | 5.29% | 28.37% |
SiMRP14 | 51.75% | 15.28% | 5.57% | 27.40% |
SiMRP15 | 51.74% | 14.79% | 5.33% | 28.14% |
SiMRP16 | 50.68% | 15.27% | 5.46% | 28.59% |
SiMRP17 | 50.26% | 15.84% | 5.35% | 28.55% |
SiMRP18 | 50.56% | 16.38% | 5.64% | 27.42% |
SiMRP19 | 48.66% | 15.16% | 5.36% | 30.82% |
SiMRP20 | 51.27% | 16.06% | 5.93% | 26.74% |
SiMRP21 | 53.28% | 14.07% | 5.64% | 27.01% |
基因名称 | α螺旋 | 延伸链 | β折叠 | 无规则卷曲 |
---|---|---|---|---|
SiMRP1 | 52.33% | 17.20% | 5.71% | 24.76% |
SiMRP2 | 50.56% | 17.04% | 6.00% | 26.40% |
SiMRP3 | 51.05% | 17.34% | 6.61% | 25.00% |
SiMRP4 | 50.48% | 16.90% | 6.03% | 26.59% |
SiMRP5 | 48.98% | 18.74% | 9.92% | 22.36% |
SiMRP6 | 51.57% | 17.22% | 5.93% | 25.29% |
SiMRP7 | 51.79% | 16.47% | 5.73% | 26.01% |
SiMRP8 | 50.28% | 17.24% | 6.04% | 26.45% |
SiMRP9 | 55.70% | 13.86% | 4.30% | 26.14% |
SiMRP10 | 47.36% | 17.09% | 5.53% | 30.02% |
SiMRP11 | 54.32% | 14.24% | 5.53% | 25.92% |
SiMRP12 | 47.90% | 15.42% | 5.90% | 30.77% |
SiMRP13 | 51.31% | 15.03% | 5.29% | 28.37% |
SiMRP14 | 51.75% | 15.28% | 5.57% | 27.40% |
SiMRP15 | 51.74% | 14.79% | 5.33% | 28.14% |
SiMRP16 | 50.68% | 15.27% | 5.46% | 28.59% |
SiMRP17 | 50.26% | 15.84% | 5.35% | 28.55% |
SiMRP18 | 50.56% | 16.38% | 5.64% | 27.42% |
SiMRP19 | 48.66% | 15.16% | 5.36% | 30.82% |
SiMRP20 | 51.27% | 16.06% | 5.93% | 26.74% |
SiMRP21 | 53.28% | 14.07% | 5.64% | 27.01% |
[1] | 刘宇杰, 陈银焕, 杨修仕, 任贵兴. 小米营养及功能成分研究进展[J]. 粮食与油脂, 2020,33(5):1-3. |
[2] | 张大众, 刘佳佳. 中国谷子种植利用史及其演进启示[J]. 草业学报, 2018,27(3):173-186. |
[3] | Cabalier O B, Allen L H. Encyclopedia of Human Nutrition[M]. Academic Press, 2012: 262-269. |
[4] |
Lin H L, An Q Z, Wang Q Z, et al. Folate In take and Pancreatic Cancer Risk:an Overall and Dose-response Meta-analysis[J]. Public Health, 2013,127(7):607-613.
doi: 10.1016/j.puhe.2013.04.008 URL |
[5] | 李松珍, 李乐. 浅谈孕早期叶酸合理应用的临床意义[J]. 中国保健, 2009(16):743-744. |
[6] | 吴国芳, 冯志坚, 马炜梁, 等. 植物学[M].第二版. 北京: 高等教育出版社, 1992: 190. |
[7] |
Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritime) bark, pycnogenol[J]. Free Radical Biology and Medicine, 1999,27(5-6):704-724.
pmid: 10490291 |
[8] |
Chen Y, Xie M Y, Gong X F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum[J]. Journal of Food Engineering, 2007,81(1):162-170.
doi: 10.1016/j.jfoodeng.2006.10.018 URL |
[9] | 傅荣杰, 冯怡. 微波萃取技术在中药及天然产物提取中的应用[J]. 中国中药杂志, 2003(9):804-807. |
[10] |
Koikeh. Clinicopathologic Features of Folate-deficiency Neuropathy[J]. Neurology, 2015,84(10):1026-1033.
doi: 10.1212/WNL.0000000000001343 URL |
[11] |
Duthies J. Folic Acid Deficiency and Cancer:Mechanisms of DNA Instability[J]. British Medical Bulletin, 1999,55(3):578-592.
doi: 10.1258/0007142991902646 URL |
[12] |
Baggott Jje, Osterrva. Meta-analysis of Cancer Riskin Folic Acid Supplementation Trials[J]. Cancer Epidemiology, 2012,36(1):78-81.
doi: 10.1016/j.canep.2011.05.003 pmid: 22018948 |
[13] | 季米, 金龙妹, 李春娟, 等. 备孕人群膳食叶酸营养状况横断面调查[J]. 中国循证儿科杂志, 2018,13(6):401-405. |
[14] | 侯思宇, 宋敏, 闫陆飞, 等. HPLC法测定谷子籽粒叶酸含量及种质资源评价[J]. 土壤, 2018,50(6):1235-1240. |
[15] | 邵丽华. 山西省小米叶酸含量的研究[D]. 临汾:山西师范大学, 2014. |
[16] |
Dean M, Rzhetsky A, Allikmets R. The human ATPbinding cassette (ABC) transporter superfamily[J]. Genome Res, 2001,11:1156-1166.
pmid: 11435397 |
[17] | Marrs K A, Alfenito M R, Lloyd A M, et al. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995,375:397-400. |
[18] |
Goodman C D, Casati P, Walbot V A. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays[J]. Plant Cell, 2004,16:1812-1826.
doi: 10.1105/tpc.022574 URL |
[19] | 王璐. 瓜叶菊MRP基因家族的表达分析[C]. 中国园艺学会观赏园艺专业委员会.中国观赏园艺研究进展(2014).中国园艺学会观赏园艺专业委员会:中国园艺学会, 2014: 281-287. |
[20] | de la Garza, R I D, Gregory, J F, Hanson A D. Folate biofortification of tomato fruit[A]. Proceedings of the National Academy of Sciences, 2007,104(10):4218-4222. |
[21] | de la Garza, R I D, Quinlivan E P, Klaus S M J, et al. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(38):13720-13725. |
[22] |
Storozhenko S, De Brouwer V, Volckaert M, et al. Folate fortification of rice by metabolic engineering[J]. Nature Biotechnology, 2007,25(11):1277-1279.
doi: 10.1038/nbt1351 URL |
[23] | 许寅生, 郭亚丽, 王玉祥, 等. 谷子的营养价值及产品开发[J]. 农业科技通讯, 2018(3):152-155. |
[24] | 张超, 张晖, 李冀新. 小米的营养及应用研究进展[J]. 中国粮油学报, 2007,22(1):51-55,78. |
[25] | Banerjee D, Mayer-Kuckuk P, Capiaux G, et al. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidilate synthase[J]. Biochim Biophys Acta, 2002,1587(2-3):164-173. |
[26] |
Gorlick R, Goker E, Trippett T, et al. Intrinsic and acquired resistance to methotrexate in acute leukemia[J]. N Engl J Med, 1996,335(14):1041-1048.
doi: 10.1056/NEJM199610033351408 URL |
[1] | 李国清, 李国瑜, 丛新军, 李妮. 谷子花生间作错期播种对谷子农艺性状及产量的影响[J]. 农学学报, 2022, 12(3): 6-10. |
[2] | 田岗, 李会霞, 王玉文, 刘鑫, 刘红. 优质抗除草剂谷子杂交种‘长杂谷466’的选育及配套技术[J]. 农学学报, 2022, 12(10): 1-5. |
[3] | 李万斌, 戴丽君, 李永平. 不同覆膜穴播种植模式对谷子和糜子作物籽粒灌浆特征及水分利用效率的影响[J]. 农学学报, 2021, 11(1): 37-43. |
[4] | 冯小磊, 史高雷, 张晓磊, 赵治海, 王晓明. 河套地区种植方式与密度对'张杂谷19号'产量的影响[J]. 农学学报, 2020, 10(5): 26-30. |
[5] | 魏萌涵, 解慧芳, 邢璐, 付楠, 王素英, 刘海萍, 宋慧, 王淑君, 刘金荣. 抗除草剂谷子新品种‘豫谷31’选育及其高产、稳定、适应性分析[J]. 农学学报, 2020, 10(3): 38-42. |
[6] | 聂萌恩, 柳青山, 白文斌, 郭平毅, 范昕琦, 王海燕, 杨慧勇. 喷施多效唑对谷子生长及生理特性的影响[J]. 农学学报, 2020, 10(2): 18-23. |
[7] | 杨慧卿, 王根全, 郝晓芬, 王晓宇, 程乔林, 秦玉忠. 山西谷子品种主要农艺性状的相关和主成分分析[J]. 农学学报, 2020, 10(10): 19-23. |
[8] | 卢成达. 长期定点连作及单序轮作处理对旱地谷子的光合特性、根系构型和产量的影响[J]. 农学学报, 2019, 9(5): 10-14. |
[9] | 靖 华,亢秀丽,王裕智,马爱平,崔欢虎. 苗前除草剂与土壤耕作方式对麦茬谷子杂草及苗期生物学性状的影响[J]. 农学学报, 2019, 9(4): 43-47. |
[10] | 王海岗,温琪汾,乔治军,穆志新. 山西谷子地方品种初选核心种质构建[J]. 农学学报, 2019, 9(4): 26-31. |
[11] | 李顺国,刘斐,刘猛,刁现民. 新时期我国谷子产业发展技术需求与展望[J]. 农学学报, 2018, 8(6): 96-100. |
[12] | 张新仕,宋世佳,徐珊珊,李思光,王桂荣,李清华. 河北省谷子产值成本贡献率分析[J]. 农学学报, 2018, 8(4): 97-100. |
[13] | 王振华,王宏富,刘鑫,王彦雯,张蕙祺,黄甫瑞. 播种深度对谷子出苗率及干物质积累的影响[J]. 农学学报, 2017, 7(9): 6-13. |
[14] | 刘鑫,王振华,李会霞,田岗,王玉文,王晓宇,王国梁. 谷子杂交种与常规种各器官干物量特征比较[J]. 农学学报, 2017, 7(1): 5-11. |
[15] | 马爱平,亢秀丽,靖华,王裕智,崔欢虎,刘玲玲,苏年贵. 麦茬复播谷子大群体小个体免间苗播种量调控装置的研制与应用[J]. 农学学报, 2016, 6(8): 45-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||