[1] |
WANG B, TANG X, MAO B, et al. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites[J]. Crit Rev Food Sci Nutr, 2022, 21:1-17.
|
[2] |
祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报, 2016, 51 (1):107-119.
doi: 10.11983/CBB15059
|
[3] |
李鲁华, 王忠妮, 任明见, 等. 谷类作物中植物激素调控花青素合成的研究进展[J]. 山地农业生物学报, 2022, 41(4):62-66.
|
[4] |
严莉, 陈建伟, 王翠平, 等. 黑果枸杞WD40编码基因LrAN11的克隆及表达分析[J]. 核农学报, 2017, 31(11):2103-2112.
doi: 10.11869/j.issn.100-8551.2017.11.2103
|
[5] |
ZHAO M, LI J, ZHU L, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes, 2019, 10(7):496-507.
|
[6] |
LIU R, LAI B, HU B, et al. Identification of MicroRNAsand their target genes related to the accumulation of anthocyanins in Litchichinensis by high-throughput sequencing and degradome analysis[J]. Front. Plant Sci., 2017, 7:2059-2071.
|
[7] |
WANG Y M, LIU WW, WANG X W, et al. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar[J]. Hortic Res., 2020, 7:118-130.
|
[8] |
AI P Y, XUE D L, WANG Y, et al. An efficient improved CRISPR mediated gene function analysis system established in Lycium ruthenicum Murr[J]. Ind. Crops Prod., 2023, 192:116142-116150.
|
[9] |
TU M X, FANG J H, ZHAO R K, et al. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine(Vitisvinifera)[J]. Hortic Res, 2022, 9:22-36.
|
[10] |
BEUEL A K, JABLONKA N, HEESEL J, et al. LEDitSHAKE: A lighting system to optimize the secondary metabolite content of plant cell suspension cultures[J]. Sci Rep, 2021, 11:23353-23368.
|
[11] |
盛建军, 李想, 何永美, 等. UV-B辐射对花青素合成代谢的影响及分子机理[J]. 植物生理学报, 2019, 55(7):949-958.
|
[12] |
YU L J, SUN Y Y, ZHANG X, et al. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes[J]. Hortic Res, 2022, 9:7-19.
|
[13] |
YANG S N, MI L, WU J H, et al. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis[J]. Crit. Rev. Food Sci. Nutr., 2022, 29:1-16.
|
[14] |
李跃, 李国瑞, 陈永胜. 微生物代谢工程在花色苷生产过程中的应用现状和前景[J]. 食品科学, 2020, 41(13):260-266.
doi: 10.7506/spkx1002-6630-20190618-202
|
[15] |
李慧敏, 贾斌, 李霞, 等. 合成芳香族化合物的酵母底盘改造策略[J]. 中国生物工程杂志, 2022, 42(10):80-92.
|
[16] |
李玲玲, 刘雪, 邱泽天, 等. 植物多酚的微生物合成[J]. 生物工程学报, 2021, 37(6):2050-2076.
|
[17] |
EICHENBERGER M, HANSSON A, FISCHER D, et al. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2018, 18(4):46-91.
|
[18] |
JONES JA, VERNACCHIOV R, COLLINS SM, et al. Complete biosynthesis of anthocyanins using E. coli polycultures[J]. mBio, 2017, 8(3):621-630.
|
[19] |
XU S, LI G J, ZHOU J W, et al. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes[J]. Front. Bioeng. Biotechnol, 2022, 10:899182-899195.
|
[20] |
BIANCONI M, CERIOTTI L, CUZZOCREA S, et al. Red carrot cells cultured in vitro are effective, stable, and safe ingredients for skin care, nutraceutical, and food applications[J]. Front. Bioeng. Biotechnol., 2020, 8:575079-575093.
|
[21] |
BELWAL T, SINGH G, JEANDET P, et al. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances[J]. Biotechnol. Adv., 2020, 43:107600-107620.
|
[22] |
唐罗, 陈晓霞, 陈军, 等. 桑椹花青素加工稳定性及其应用研究进展[J]. 食品与发酵工业, 2022:1-13.
|
[23] |
ZHENG J, DING C X, WANG L S, et al. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau[J]. Food Chem., 2011, 126(3):859-865.
|
[24] |
HE J R, YE S X, CORREIA P, et al. Dietary polyglycosylatedanthocyanins, the smart option? A comprehensive review on their health benefits and technological applications[J]. Compr. Rev. Food Sci. Food Saf., 2022, 21:3096-3128.
|
[25] |
JOKIOJA J, YANG B R, LINDERBORG M K. Acylatedanthocyanins:A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation[J]. Compr. Rev. Food Sci. Food Saf., 2021, 20:5570-5615.
|
[26] |
赵祥杰, 杨文君, 杨荣玲, 等. 花色苷生物转化修饰的研究进展[J]. 生物技术通报, 2019, 35(10):205-211.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0262
|
[27] |
马久强, 王晓泽, 秦帅, 等. 黑枸杞中花青素的提取技术概述[J]. 江西化工, 2023, 39(1):5-8,12.
|
[28] |
SINGH M C, PROBST Y, PRICE E W, et al. Relative comparisons of extraction methods and solvent composition for Australian blueberry anthocyanins[J]. J. Food Compos. Anal., 2022, 105:104232-104240.
|
[29] |
FU X Z, DU Y L, ZOU L G, et al. Acidified glycerol as a one-step efficient green extraction and preservation strategy for anthocyanin from blueberry pomace:New insights into extraction and stability protection mechanism with molecular dynamic simulation[J]. Food Chem., 2022, 390:133226-133237.
|
[30] |
DÍAZ-ÁLVAREZ R, CARULLO D, PATARO G, et al. Testing of a new high voltage electrical discharge generator prototype at high frequencies to assist anthocyanin extraction from blueberries[J]. Food Biosci., 2022, 50(Part A):102127-102138.
|
[31] |
HU A J, HAO ST, ZHENG J, et al. Multi-frequency ultrasonic extraction of anthocyanins from blueberry pomace and evaluation of its antioxidant activity[J]. J. AOAC Int., 2021, 104:811-817.
|
[32] |
ZHOU X, WU YT, WANG Y, et al. An efficient approach for the extraction of anthocyanins from Lyciumruthenicum using semi-continuous liquid phase pulsed electrical discharge system[J]. Innov.Food Sci. Emerg. Technol., 2022, 80:103099-103109.
|
[33] |
DONG R H, TIAN J L, HUANG Z Y, et al. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermo stability and antioxidant abilities[J]. Food Chem., 2023, 410:135375-135388.
|
[34] |
WANG Y P, FU J X, YANG D. In situ stability of anthocyanins in Lycium ruthenicum Murray[J]. Molecules, 2021, 26(23):7073-7079.
|
[35] |
MUCHEB M, SPEERS R A, RUPASINGHEHP V. Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of "Merlot" and "Ruby" grapes(Vitisvinifera)[J]. Front. Nutr., 2018, 5:100-109.
|
[36] |
LI J F, LI Z P, MA S S, et al. Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment[J]. Innov.Food Sci. Emerg. Technol., 2023, 84:103294-103304.
|
[37] |
TAN C, DADMOHAMMADI Y, LEE M C, et al. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins[J]. Compr Rev Food Sci Food Saf., 2021, 20(4):3164-3191.
|
[38] |
DUDEK A, SPIEGEL M, STRUGAŁA-DANAK P, et al. Analytical and theoretical studies of antioxidant properties of chosen anthocyanins; a structure-dependent relationships[J]. Int. J. Mol. Sci., 2022, 23(10):5432-5450.
|
[39] |
MA Y, FENG Y H, DIAOT W, et al. Experimental and theoretical study on antioxidant activity of the four anthocyanins[J]. J. Mol. Struct., 2020, 1204:127509-127536.
|
[40] |
李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20):8163-8171.
|
[41] |
HERRERA-BALANDRANO D D, CHAI Z, HUTABARAT R P, et al. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPKactivation: In vitro and in vivo studies[J]. Redox Biol., 2021, 46:102100-102113.
|
[42] |
XIE L H, SU H M, SUN C D, et al. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms[J]. Trends Food Sci. Technol., 2018, 72:13-24.
|
[43] |
PENG Y J, YAN Y M, WAN P, et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice[J]. Free Radic. Biol. Med., 2019, 136:96-108.
|
[44] |
EKERM E, AABY K, BUDICLETO I, et al. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability[J]. Foods, 2020, 9(1):2-20.
|
[45] |
KALT W, MCDONALD J, VINQVIST-TYMCHUK M, et al. Human anthocyanin bioavailability: Effect of intake duration and dosing[J]. Food Funct., 2017, 8:4563-4569.
doi: 10.1039/c7fo01074e
pmid: 29115354
|
[46] |
DI LORENZO C, COLOMBO F, BIELLA S, et al. Polyphenols and human health: The role of bioavailability[J]. Nutrients, 2021, 13(1):273-303.
|
[47] |
LI Y. Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins[J]. J. Food Eng., 2021, 302:110552-110561.
|
[48] |
JIANG Z Y, ZHAO S J, FAN Z Y, et al. A novel all-natural (collagen + pectin)/chitosan aqueous two-phase microcapsule with improved anthocyanin loading capacity[J]. Food Hydrocolloids, 2023, 134:107984-107994.
|
[49] |
HERRERA-BALANDRANOD D, CHAI Z, BETA T, et al. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability[J]. Trends Food Sci. Technol., 2021, 118(Part B), 808-821.
|
[50] |
XIEC J, HUANG M G, YING R F, et al. Olive pectin-chitosan nanocomplexes for improving stability and bioavailability of blueberry anthocyanins[J]. Food Chem., 2023, 417:135798-135823.
|
[51] |
ZHAO J C, YU J, ZHI Q, et al. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditi selegans[J]. Food Funct., 2021, 12:12647-12658.
|
[52] |
BARIEXCA T, EZDEBSKI J, REDAN BW, et al. Pure polyphenols and cranberry juice high in anthocyanins increase antioxidant capacity in animal organs[J]. Foods, 2019, 8(8):340-350.
|
[53] |
周迪, 王胤晨, 田兴舟, 等. 花青素增强反刍动物抗氧化性能作用机制的研究[J]. 畜牧兽医学报, 2019, 50(8):1536-1544.
|
[54] |
CHANGXING L, CHENLING M, ALAGAWANY M, et al. Health benefits and potential applications of anthocyanins in poultry feed industry[J]. World's Poult. Sci. J., 2018, 74(2):251-264.
|
[55] |
EMESE T, PETER F, GABOR F, et al. Nutraceuticals induced changes in the broiler gastrointestinal tract microbiota[J]. mSystems, 2021, mSystems, 6(2):1-25.
|
[56] |
MA Y, DING S J, FEI Y Q, et al. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella[J]. Food Control, 2019, 106:106712-106720.
|
[57] |
KHAN M S, IKRAM M, PARK J S, et al. Gut microbiota, its role in induction of Alzheimer's disease pathology, and possible therapeutic interventions: Special focus on anthocyanins[J]. Cells, 2020, 9(4):853-874.
|
[58] |
LINH N V, NGUYEN D V, KHONGDEE N, et al. Influence of black rice (Oryzasativa L.) bran derived anthocyanin-extract on growth rate, immunological response, and immune-antioxidant gene expression in Nile tilapia (Oreochromis niloticus) cultivated in a biofloc system[J]. Fish Shellfish Immunol., 2022, 128:604-611.
|
[59] |
MINH T N S, SIWAPORN P, THOMAS J S, et al. Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage[J]. Front. Vet. Sci., 2022, 9:880838-880848.
|
[60] |
PATINDRA A R P, MINH T N S, SIWAPORN P, et al. Dietary inclusion of anthocyanin-rich black cane silage treated with ferrous sulfate heptahydrate reduces oxidative stress and promotes tender meat production in goats[J]. Front. Vet. Sci., 2022, 9:969321-969333.
|
[61] |
SUONGN T M, PAENGKOUM S, PURBAR A P, et al. Optimizing anthocyanin-rich black cane (Saccharumsinensisrobx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative[J]. Fermentation, 2022, 8(6):248-269.
|
[62] |
张超, 史红丽, 戴佳锟, 等. 鲜食黑糯玉米新品种陕K8143的选育[J]. 中国种业, 2023, 3:106-108.
|
[63] |
TIAN XZ, PAENGKOUM P, PAENGKOUM S, et al. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover[J]. J IntegrAgr, 2018, 17(9):2082-2095.
|
[64] |
LI J X, ZHOU D, LI H, et al. Effect of purple corn extract on performance, antioxidant activity, egg quality, egg amino acid, and fatty acid profiles of laying hen[J]. Front. Vet. Sci., 2023, 9:1083842-1083853.
|
[65] |
ANTUNOVIĆ Z, NOVOSELEC J, KLIRŠALAVARDIĆ Ž, et al. Influence of red corn rich in anthocyanins on productive traits, blood metabolic profile, and antioxidative status of fattening lambs[J]. Animals, 2022, 12(5):612-624.
|
[66] |
HOSODA K, ERUDEN B, MATSUYAMA H, et al. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows[J]. Anim. Sci. J., 2012, 83(6):453-459.
doi: 10.1111/j.1740-0929.2011.00981.x
pmid: 22694328
|
[67] |
TIAN X, LU Q. Anthocyanins in dairy cow nutrition: A review[J]. Agriculture, 2022, 12(11):1806-1819.
|
[68] |
WEI L, GOMAA W, AMETAJ B, et al. Feeding red osier dogwood (Cornussericea) to beef heifers fed a high-grain diet affected feed intake and total tract digestibility[J]. Anim. Feed Sci. Technol, 2019, 247:83-91.
|
[69] |
PROMMACHART R, CHERDTHONG A, NAVANUKRAW C, et al. Effect of dietary anthocyanin-extracted residue on meat oxidation and fatty acid profile of male dairy cattle[J]. Animals, 2021, 11(2):322-340.
|
[70] |
GAO J, ZHAO G Y. Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: Impacts, mechanisms, and perspectives[J]. Anim. Nutr., 2022, 9:327-334.
|
[71] |
LI D T, WANG P P, LUO Y H, et al. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade[J]. Crit. Rev. Food Sci. Nutr., 2017, 57:1729-1741.
doi: 10.1080/10408398.2015.1030064
pmid: 26192537
|
[72] |
YANG C, CHOWDHURY MAK, HOU Y, et al. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application[J]. Pathogens. 2015, 4:137-156.
doi: 10.3390/pathogens4010137
pmid: 25806623
|
[73] |
ABDELLI N, SOLÀ-ORIOL D, PÉREZ J F. Phytogenic feed additives in poultry: Achievements, prospective and challenges[J]. Animals(Basel), 2021, 11(12):3471-3497.
|