欢迎访问《农学学报》,

农学学报 ›› 2025, Vol. 15 ›› Issue (3): 93-100.doi: 10.11923/j.issn.2095-4050.cjas2024-0082

• 农业信息 农业气象 • 上一篇    下一篇

不同播期下旱地春小麦产量及生物量应对氮肥和CO2浓度升高的响应模拟

杨婷婷(), 刘强(), 马晓艺   

  1. 甘肃农业大学信息科学技术学院,兰州 730000
  • 收稿日期:2024-04-23 修回日期:2024-10-22 出版日期:2025-03-20 发布日期:2025-03-18
  • 通讯作者:
    刘强,男,1974年出生,河北沧县人,教授,硕士,研究方向:农业信息化。通信地址:730000 甘肃省兰州市安宁区营门村1号 甘肃农业大学信息科学技术学院,Tel:0931-7631865,E-mail:
  • 作者简介:

    杨婷婷,女,1999年出生,硕士,主要从事农业作物模型方面的研究,E-mail:

  • 基金资助:
    国家自然科学基金项目“旱作麦田土壤N2O排放对耕作措施及水氮管理的响应模拟”(32360438); 甘肃省科技计划项目“旱作小麦增产和N2O减排的耕作措施及氮肥管理调控技术与应用”(22YF7FA116)

Simulation of Response of Spring Wheat Yield and Biomass to Increasing Nitrogen Fertilizer and CO2 Concentration in Dryland Under Different Sowing Dates

YANG Tingting(), LIU Qiang(), MA Xiaoyi   

  1. School of Information Science and Technology, Gansu Agricultural University, Lanzhou 730000
  • Received:2024-04-23 Revised:2024-10-22 Online:2025-03-20 Published:2025-03-18

摘要:

为了探索不同播期下施氮量的变化和CO2浓度升高对半干旱地区小麦产量及生物量的影响。本研究利用调参后的APSIM模型,设置了3个不同播期,分别为早播ESW(3月3日)、正常播NSW(3月19日)、晚播LSW(3月31日),5个施氮处理N1(0 kg/hm2)、N2(52.5 kg/hm2)、N3(105 kg·hm2)、N4(157.5 kg/hm2)、N5(210 kg/hm2)和5个CO2浓度C1(370 ppm)、C2(420 ppm)、C3(470 ppm)、C4(520 ppm)、C5(570 ppm)的模拟实验。结果表明:APSIM模型在试验区有较好的适用性;施氮量和CO2浓度均对旱地春小麦产量和生物量产生影响,且不同播期下的影响各不相同。随着播期的推迟施氮量和CO2浓度对小麦产量和生物量的影响均表现为正效应,施氮量的影响远大于CO2浓度的影响;在特定施氮量和CO2浓度下,播期选择对产量和生物量有显著影响,正常播种期通常产量较高,而晚播则有利于生物量的积累。当气候和土壤条件变化时,通过调整播期可优化小麦生产。如当施氮量为N4、CO2浓度为C1时,正常播下小麦产量最大,晚播下小麦生物量最大。本研究对于指导半干旱地区小麦生产具有重要意义。在实际生产中,可以根据当地的气候和土壤条件,通过调整播期、施氮量和CO2浓度等参数,来优化小麦生产,提高产量和生物量。特别是在全球气候变化和农业生产面临诸多挑战的背景下,这一研究为半干旱地区小麦生产的可持续发展提供了有力的支持。

关键词: 小麦, APSIM模型, 播期, 施氮量, CO2浓度, 产量, 生物量, 半干旱地区

Abstract:

This study explores the changes in nitrogen application rate and the effects of increased CO2 concentration on wheat yield and biomass in semi-arid areas under different sowing dates. This article used the adjusted APSIM model to set up three different sowing dates of early sowing ESW (March 3rd), normal sowing NSW (March 19th), and late sowing LSW (March 31st), five nitrogen application treatments of N1(0 kg/hm2), N2(52.5 kg/hm2), N3(105 kg/hm2), N4(157.5 kg/hm2), and N5 (210 kg/hm2), and five CO2 concentrations of C1 (370 ppm), C2 (420 ppm), C3 (470 ppm), C4 (520 ppm), and C5 (570 ppm) for simulation experiments. The results indicated that the APSIM model had good applicability in the experimental area; both nitrogen application rate and CO2 concentration had an impact on the yield and biomass of dryland spring wheat, and the effects varied under different sowing dates. As the sowing date was delayed, both nitrogen application rate and CO2 concentration had a positive effect on wheat yield and biomass, with nitrogen application rate having a much greater impact than CO2 concentration; under specific nitrogen application rates and CO2 concentrations, the choice of sowing date had a significant impact on yield and biomass. Higher yields were typically achieved during normal sowing periods, while late sowing was beneficial for biomass accumulation. When climate and soil conditions change, adjusting the sowing date can optimize wheat production. When the nitrogen application rate was N4 and the CO2 concentration was C1, the wheat yield was highest under normal sowing, and the wheat biomass was highest under late sowing. This study holds significant importance in guiding wheat production in semi-arid regions. In practical production, based on local climate and soil conditions, parameters such as sowing dates, nitrogen application rates, and CO2 concentrations can be adjusted to optimize wheat production and enhance both yield and biomass. Especially in the context of global climate change and the numerous challenges faced by agricultural production, this research provides robust support for the sustainable development of wheat production in semi-arid areas.

Key words: wheat, APSIM model, sowing date, nitrogen application rate, CO2 concentration, yield, biomass, semi-arid region