[1] |
农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019:1-150.
|
[2] |
韩刚, 许玉艳, 刘琪, 等. 科学制定水产养殖业绿色发展标准的思考与建议[J]. 中国渔业质量与标准, 2019, 9(05):55-60.
|
[3] |
ZHANG Q, ACHAL V, XU Y, et al. Aquaculture wastewater quality improvement by water spinach (Ipomoea aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district[J]. Aquacultural engineering, 2014, 60:48-55.
doi: 10.1016/j.aquaeng.2014.04.002
URL
|
[4] |
MOOK W T, CHAKRABARTI M H, AROUA M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review[J]. Desalination, 2011, 285:1-13.
doi: 10.1016/j.desal.2011.09.029
URL
|
[5] |
吴伟, 范立民. 水产养殖环境的污染及其控制对策[J]. 中国农业科技导报, 2014, 16(2):26-34.
|
[6] |
中华人民共和国生态环境部. 2018中国生态环境状况公报[Z]. 2018:1-60.
|
[7] |
焦隽. 江苏省农村主要污染源氮磷污染负荷区域评价及控制对策[D]. 南京:南京农业大学, 2008:2-34.
|
[8] |
操建华. 水产养殖业自身污染现状及其治理对策[J]. 社会科学家, 2018(2):46-50.
|
[9] |
刘国锋, 徐跑, 吴霆, 等. 中国水产养殖环境氮磷污染现状及未来发展思路[J]. 江苏农业学报, 2018, 34(1):225-233.
|
[10] |
FILHO D W, TORRES M A, ZANIBONI-FILHO E, et al. Effect of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapara, Leporinus elongatus (Valenciennes, 1847)[J]. Aquaculture, 2004, 244(1):349-357.
doi: 10.1016/j.aquaculture.2004.11.024
URL
|
[11] |
BUENTELLO J A, GATLIN D M, Neill W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus)[J]. Aquaculture, 2000, 182(3):339-352.
doi: 10.1016/S0044-8486(99)00274-4
URL
|
[12] |
Mcnatt R A, RICE J A. HYPOXIA-INDUCED growth rate reduction in two juvenile estuary-dependent fishes[J]. Journal of experimental marine biology and ecology, 2004, 311(1):147-156.
doi: 10.1016/j.jembe.2004.05.006
URL
|
[13] |
STILLER K T, VANSELOW K H, MORAN D, et al. The effect of diet, temperature and intermittent low oxygen on the metabolism of rainbow trout[J]. Br J nutr, 2017, 117(6):784-795.
doi: 10.1017/S0007114517000472
URL
|
[14] |
彭凌云, 遆超普, 李恒鹏, 等. 太湖流域池塘养殖污染排放估算及其空间分布特征[J]. 湖泊科学, 2020, 32(1):70-78.
|
[15] |
林舒康. 固定化微生物原位修复黑臭水体底泥的应用研究[D]. 扬州:扬州大学, 2018:27-69.
|
[16] |
叶恒朋, 陈繁忠, 盛彦清, 等. 覆盖法控制城市河涌底泥磷释放研究[J]. 环境科学学报, 2006(2):262-268.
|
[17] |
宋小君, 李大鹏, 黄勇. 易悬浮和外源输入下原位覆盖对生物有效磷形成的影响[J]. 环境科学学报, 2020, 40(1):205-211.
|
[18] |
LIN J, ZHAN Y, ZHU Z. Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release[J]. Science of the total environment, 2010, 409(3):638-46.
doi: 10.1016/j.scitotenv.2010.10.031
URL
|
[19] |
LIU Y, LIU X, LU S, et al. Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential[J]. Chemical engineering journal, 2020, 384.
|
[20] |
徐晓军. 化学絮凝剂原理[M]. 北京: 科学出版社, 2005:3-280.
|
[21] |
杨开吉, 姚春丽. 高分子复合絮凝剂作用机理及在废水处理中应用的研究进展[J]. 中国造纸, 2019, 38(12):65-71.
|
[22] |
李宝磊, 刘舒, 曾乐, 等. 我国污染河流治理与修复技术现状[J]. 科技创新与应用, 2020(1):137-138.
|
[23] |
杨岱恩, 严子希, 童建彬, 等. PAFC-CPAM处理生活污水的实验研究[J]. 节能, 2019, 38(12):157-160.
|
[24] |
葛川. 水产养殖业养殖污水治理工程设计与效果研究[D]. 宁波:浙江大学, 2013:29-68.
|
[25] |
宋颖. 水产养殖污染源强及多介质土壤层技术废水处理效果与机理研究[D]. 宁波:浙江大学, 2016:2-69.
|
[26] |
林海, 张晓伟, 潘建林, 等. “稻-渔”工业化生态循环水养殖试验[J]. 水产养殖, 2019, 40(12):16-18.
|
[27] |
陈冬林, 周慧芳, 张鸣. 水产养殖废水净化与循环应用技术研究[J]. 中国水产, 2016(5):91-93.
|
[28] |
LIU Y B, QIN L, LI F B, et al. Impact of Rice-Catfish/Shrimp Co-culture on Nutrients Fluxes Across Sediment-Water Interface in Intensive Aquaculture Ponds[J]. Rice science, 2019, 26(06):416-424.
doi: 10.1016/j.rsci.2019.06.001
URL
|
[29] |
潘建林, 徐在宽, 唐建清, 等. 湖泊大型贝类控藻与净化水质的研究[J]. 海洋湖沼通报, 2007(2):69-79
|
[30] |
KUEBUTORNYE F K A, ABARIKE E D, LU Y. A review on the application of Bacillus as probiotics in aquaculture[J]. Fish and shellfish immunology, 2019, 87:820-828.
doi: 10.1016/j.fsi.2019.02.010
URL
|
[31] |
郭蓓. 3种微生物制剂不同比例组合对池塘水质的影响[C].见:中国水产学会、四川省水产学会.2016年中国水产学会学术年会论文摘要集. 四川:中国水产学会、四川省水产学会, 2016: 261.
|
[32] |
GOUTAM B, KUMAR R A. The advancement of probiotics research and its application in fish farming industries[J]. Research in veterinary science, 2017, 115:66-77.
doi: 10.1016/j.rvsc.2017.01.016
URL
|
[33] |
宋文辉. 芽孢杆菌对草鱼养殖水质和生长的影响及其机理研究[D]. 宁波:浙江大学, 2010:2-69.
|
[34] |
Hoang M N, Nguyen P N, Bossier P. Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus[J]. Aquaculture, 2020, 515.
|
[35] |
刘洋, 宋志文, 李凌志, 等. 微生态制剂-生物膜对虾养殖系统水质净化效果研究[J]. 水生态学杂志, 2020, 41(01):92-99.
|
[36] |
THOMPSON F L, ABREU P C, WASIELESKY W. Importance of biofilm for water quality and nourishment in intensive shrimp culture[J]. Aquaculture, 2002, 203(3):263-278.
doi: 10.1016/S0044-8486(01)00642-1
URL
|
[37] |
曹蓉, 王宝贞, 高光军. 东营生态塘中有机物降解机理的研究[J]. 河北建筑科技学院学报, 2004(3):14-17.
|
[38] |
张巍, 许静, 李晓东, 等. 稳定塘处理污水的机理研究及应用研究进展[J]. 生态环境学报, 2014, 23(8):1396-1401.
|
[39] |
KUMAR R, GOYAL D. Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system[J]. Indian journal of Microbiology, 2010, 50(1):34-40.
doi: 10.1007/s12088-010-0063-4
URL
|
[40] |
黄亮, 唐涛, 黎道丰, 等. 旁路生物稳定塘系统净化滇池入湖河道污水[J]. 中国给水排水, 2008, 24(19):13-15.
|
[41] |
熊桂洪, 任荣, 崔凤. 人工湿地净化污水机理及应用[J]. 环境与发展, 2019, 31(1):251-253.
|
[42] |
成水平, 王月圆, 吴娟. 人工湿地研究现状与展望[J]. 湖泊科学, 2019, 31(6):1489-1498.
|
[43] |
WANG Y, LIN Z, HUANG W, et al. Electron storage and resupply modes during sulfur cycle enhanced nitrogen removal stability in electrochemically assisted constructed wetlands under low temperature[J]. Bioresource technology, 2020, 300.
|
[44] |
吴俊泽, 王艳艳, 李悦悦, 等. 海水人工湿地系统脱氮效果与基质酶活性的相关性[J]. 海洋科学, 2019, 43(5):36-44.
|
[45] |
张翔凌. 不同基质对垂直流人工湿地处理效果及堵塞影响研究[D]. 北京:中国科学院研究生院(水生生物研究所), 2007:7-89.
|
[46] |
JIA L, LIU H, KONG Q, et al. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater[J]. Water research, 2020, 169.
|
[47] |
黄伟, 张荣新, 傅金祥, 等. 基于煤矸石/沸石自动改性的潜流人工湿地填料组合方案研究[J]. 环境污染与防治, 2017, 39(2):165-169.
|
[48] |
HUANG J, XIAO J, GUO Y, et al. Long-term effects of silver nanoparticles on performance of phosphorus removal in a laboratory-scale vertical flow constructed wetland[J]. Journal of environmental sciences, 2020, 87:319-330.
doi: 10.1016/j.jes.2019.07.012
URL
|
[49] |
吴雨涵, 余俊, 王锐涵. 不同配置人工湿地植物群落对生活污水净化效果[J]. 水土保持研究, 2019, 26(6):364-371.
|
[50] |
GUO X, CUI X, LI H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands[J]. Science of the total environment, 2020, 703.
|
[51] |
曹世玮, 荆肇乾, 王祝来, 等. 以粉煤灰陶粒为基质的人工湿地中植物的生长特性与去污机制研究[J]. 应用化工, 2019, 48(08):1800-1804.
|
[52] |
潘傲, 张智, 孙磊, 等. 种植不同植物的表面流人工湿地净化效果和微生物群落差异分析[J]. 环境工程学报, 2019, 13(8):1918-1929.
|
[53] |
胡庚东, 宋超, 陈家长, 等. 池塘循环水养殖模式的构建及其对氮磷的去除效果[J]. 生态与农村环境学报, 2011, 27(3):82-86.
|
[54] |
罗国芝, 陈晓庆, 谭洪新. 养殖用水重复利用过程中悬浮固体物的性质及控制[J]. 渔业现代化, 2017, 44(3):15-24.
|
[55] |
刘旭佳, 王志成, 熊向英, 等. 广西工厂化循环水养殖石斑鱼水质处理效果[J]. 渔业现代化, 2019, 46(2):22-27.
|
[56] |
YIN H B, WANG J F, ZHANG R Y, et al. Performance of physical and chemical methods in the co-reduction of internal phosphorus and nitrogen loading from the sediment of a black odorous river[J]. The Science of the total environment, 2019, 663:68-77.
doi: 10.1016/j.scitotenv.2019.01.326
URL
|
[57] |
张翠绵, 贾楠, 胡栋, 等. 淡水养殖底泥净化复合芽孢杆菌的筛选与应用[J]. 环境工程学报, 2017, 11(2):1281-1286.
|
[58] |
YUTTHAPONG S, SUNIPA C, SOMPONG O. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.[J]. Pakistan journal of biological sciences:PJBS, 2017, 20(1):52-58.
doi: 10.3923/pjbs.2017.52.58
URL
|
[59] |
杨静丹, 祝铭韩, 刘琳, 等. 异养硝化-好氧反硝化菌HY3-2的分离及脱氮特性[J]. 中国环境科学, 2020, 40(1):294-304.
|
[60] |
WU Z, AN Y, WANG Z, et al. Study on zeolite enhanced contact-adsorption regeneration-stabilization process for nitrogen removal[J]. J Hazard mater, 2008, 156(1-3):317-326.
doi: 10.1016/j.jhazmat.2007.12.029
URL
|