[1] |
SANTNER A, ESTELLE M. Recent advances and emerging trends in plant hormone signalling[J]. Nature, 2009, 459(7250):1071-1078.
doi: 10.1038/nature08122
|
[2] |
ALDER A, JAMIL M, MARZORATI M, et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone[J]. Science, 2012, 335(6074):1348-1351.
doi: 10.1126/science.1218094
URL
|
[3] |
COOK CE, WHICHARD LP, TURNER B, et al. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant[J]. Science (new york, n.y.), 1966, 154(3753):189-1190.
|
[4] |
AKIYAMA K, MATSUZAKI K, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043):824-827.
doi: 10.1038/nature03608
|
[5] |
UMEHARA M, HANADA A, YOSHIDA S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210):195-200.
doi: 10.1038/nature07272
|
[6] |
黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10):1227-1281.
|
[7] |
JIANG L, LIU X, XIONG G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480):401-405.
doi: 10.1038/nature12870
|
[8] |
ZHOU F, LIN Q, ZHU L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480):406-410.
doi: 10.1038/nature12878
|
[9] |
WANG L, WANG B, JIANG L, et al. Strigolactone signaling in arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation[J]. Plant cell, 2015, 27(11):3128-3142.
doi: 10.1105/tpc.15.00605
URL
|
[10] |
WANG B, WANG Y, LI J. Strigolactones. In: Li JY, Li CY, Smith SM, eds. Hormone metabolism and signaling in plants[J]. London: Academic Press, 2017:327-359.
|
[11] |
KOHLEN W, CHARNIKHOVA T, LIU Q, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis[J]. Plant physiol, 2011, 155(2):974-987.
doi: 10.1104/pp.110.164640
pmid: 21119045
|
[12] |
MAYZLISH-GATI E, DE-CUVPER C, GOORMACHTIG S, et al. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis[J]. Plant physiol, 2012, 160(3):1329-1341.
|
[13] |
ARITE T, UMEHARA M, ISHIKAWA S, et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant cell physiol, 2009, 50(8):1416-1424.
doi: 10.1093/pcp/pcp091
pmid: 19542179
|
[14] |
HAMIAUX C, DRUMMOND R S, JANSSEN B J, et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone[J]. Current biology, 2012, 22(21):2032-2036.
doi: 10.1016/j.cub.2012.08.007
pmid: 22959345
|
[15] |
YAO R, WANG L, LI Y, et al. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone[J]. Journal of experimental botany, 2018, 69(9):2355-2365.
doi: 10.1093/jxb/ery014
pmid: 29365172
|
[16] |
YAO R, MING Z, YAN L, et al. DWARF14 is a non-canonical hormone receptor for strigolactone[J]. Nature, 2016, 536(7617):469-473.
doi: 10.1038/nature19073
|
[17] |
YAO R, WANG F, MING Z, et al. ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds[J]. Cell research, 2017, 27(6):838-841.
doi: 10.1038/cr.2017.3
pmid: 28059066
|
[18] |
MARCO B, JOANNE C. The many models of strigolactone signaling[J]. Trends in plant science, 2020, 25:395-400.
doi: S1360-1385(19)30334-6
pmid: 31948791
|
[19] |
LIN Q, WANG D, DONG H, et al. Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1[J]. Nature communications, 2012, 3:752.
doi: 10.1038/ncomms1716
pmid: 22434195
|
[20] |
XU C, WANG Y, YU Y, et al. Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering[J]. Nature communications, 2012, 3:750.
doi: 10.1038/ncomms1743
pmid: 22434193
|
[21] |
LIU Y, WU G, ZHAO Y, et al. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching[J]. Plant physiology, 2021, 187(2):947-962.
doi: 10.1093/plphys/kiab259
pmid: 34608948
|
[22] |
KATYAYINI N U, RINNE P, VAN DER SCHOOT C. Strigolactone-based node-to-bud signaling may restrain shoot branching in hybrid aspen[J]. Plant cell physiology, 2019, 60(12):2797-2811.
doi: 10.1093/pcp/pcz170
URL
|
[23] |
KERR S C, PATIL S B, DE SAINT GERMAIN A, et al. Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in Pisum sativum[J]. Plant journal, 2021, 107(6):1756-1770.
doi: 10.1111/tpj.v107.6
URL
|
[24] |
HANSON P I, WHITEHEART S W. AAA+ proteins: have engine, will work[J]. Nature reviews molecular cell biology, 2005, 6(7):519-529.
doi: 10.1038/nrm1684
pmid: 16072036
|
[25] |
NEUWALD A F, ARAVIND L, SPOUGE J L, et al. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes[J]. Genome research, 1999, 9(1):27-43.
pmid: 9927482
|
[26] |
MATIAS P M, BAEK S H, BANDEIRAS T M, et al. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors[J]. Frontiers in molecular biosciences, 2015, 2:17.
doi: 10.3389/fmolb.2015.00017
pmid: 25988184
|
[27] |
MA H, DUAN J, KE J, et al. A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex[J]. Science advances, 2017, 3(6):e1601217.
doi: 10.1126/sciadv.1601217
URL
|
[28] |
BRAUN N, DE SAINT GERMAIN A, PILLOT J P, et al. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching[J]. Plant physiology, 2012, 158(1):225-238.
doi: 10.1104/pp.111.182725
pmid: 22045922
|
[29] |
SOUNDAPPAN I, BENNETT T, MORFFY N, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in arabidopsis[J]. Plant cell, 2015, 27(11):3143-3159.
doi: 10.1105/tpc.15.00562
URL
|
[30] |
国浩平. 杨树PagD53基因的克隆表达及其与PagD14基因的相互作用的研究[D]. 泰安: 山东农业大学, 2020.
|
[31] |
DUAN J, YU H, YUAN K, et al. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice[J]. Proceedings of the national academy of sciences, 2019, 116(28):14319-14324.
doi: 10.1073/pnas.1810980116
URL
|
[32] |
姚瑞枫, 谢道昕. 独脚金内酯信号途径的新发现——抑制子也是转录因子[J]. 植物学报, 2020, 55(4):397-402.
doi: 10.11983/CBB20099
|
[33] |
WANG L, WANG B, YU H, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis[J]. Nature, 2020, 583(7815):277-281.
doi: 10.1038/s41586-020-2382-x
|
[34] |
BEVERIDGE C A. Long-distance signalling and a mutational analysis of branching in pea[J]. Plant growth regulation, 2000, 32(2-3):193-203.
doi: 10.1023/A:1010718020095
URL
|
[35] |
BEVERIDGE C A, DUN E A, RAMEAU C. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones[J]. Plant physiology, 2009, 151(3):985-990.
doi: 10.1104/pp.109.143909
pmid: 19767387
|
[36] |
DUN E A, HANAN J, BEVERIDGE C A. Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea[J]. Plant cell, 2009b, 21(11):3459-3472.
doi: 10.1105/tpc.109.069013
URL
|
[37] |
LIGEROT Y, DE SAINT GERMAIN A, WALDIE T, et al. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop[J]. PloS genetics, 2017, 13(12):e1007089.
doi: 10.1371/journal.pgen.1007089
URL
|
[38] |
LINCOLN C, BRITTON J H, ESTELLE M. Growth and development of the axr1 mutants of Arabidopsis[J]. Plant cell, 1990, 2(11):1071-1080.
doi: 10.1105/tpc.2.11.1071
pmid: 1983791
|
[39] |
DUN E A, BREWER PB, BEVERIDGE C A. Strigolactones: discovery of the elusive shoot branching hormone[J]. Trends in plant science, 2009, 14(7):364-372.
doi: 10.1016/j.tplants.2009.04.003
pmid: 19540149
|
[40] |
SONG X, LU Z, YU H, et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice[J]. Cell research, 2017, 27(9):1128-1141.
doi: 10.1038/cr.2017.102
pmid: 28809396
|
[41] |
马洪磊. 植物辅抑制因子TPL/TPR蛋白结构与EAR基序相互作用分子机理研究[D]. 上海: 中国科学院上海药物研究所, 2016.
|
[42] |
WANG L, ZHANG Q. Boosting rice yield by fine-tuning SPL gene expression[J]. Trends in plant science, 2017, 22(8):643-646.
doi: S1360-1385(17)30116-4
pmid: 28647102
|
[43] |
LU Z, YU H, XIONG G, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture[J]. Plant cell, 2013, 25(10):3743-3759.
doi: 10.1105/tpc.113.113639
URL
|
[44] |
KERR S C, BEVERIDGE C A. IPA1: a direct target of SL signaling[J]. Cell research, 2017, 27(10):1191-1192.
doi: 10.1038/cr.2017.114
pmid: 28884742
|
[45] |
TAKEDA T, SUWA Y, SUZUKI M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant journal, 2003, 33(3):513-520.
doi: 10.1046/j.1365-313x.2003.01648.x
pmid: 12581309
|
[46] |
XIE Y, LIU Y, MA M, et al. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J]. Nature communications, 2020, 11(1):1955.
doi: 10.1038/s41467-020-15893-7
pmid: 32327664
|
[47] |
FANG Z, JI Y, HU J, et al. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering[J]. Molecular plant, 2020, 13(4):586-597.
doi: S1674-2052(19)30401-0
pmid: 31837469
|
[48] |
LI J, NAM K H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase[J]. Science, 2002, 295(5558):1299-1301.
doi: 10.1126/science.1065769
pmid: 11847343
|
[49] |
LIU J, CHENG X, LIU P, et al. miR156-Targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat[J]. Plant physiology, 2017, 174(3):1931-1948.
doi: 10.1104/pp.17.00445
URL
|
[50] |
HU J, JI Y, HU X, et al. BES1 functions as the co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in arabidopsis[J]. Plant communications, 2019, 1(3):100014.
doi: 10.1016/j.xplc.2019.100014
URL
|
[51] |
DOEBLEY J, STEC A, GUSTUS C. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance[J]. Genetics, 1995, 141(1):333-346.
doi: 10.1093/genetics/141.1.333
pmid: 8536981
|
[52] |
MASON M G, ROSS J J, BABST B A, et al. Sugar demand, not auxin, is the initial regulator of apical dominance[J]. Proceedings of the national academy of sciences, 2014, 111(16):6092-6097.
doi: 10.1073/pnas.1322045111
URL
|
[53] |
QU B, QIN Y, BAI Y. From signaling to function: how strigolactones regulate plant development[J]. Science china life sciences, 2020, 63(11):1768-1770.
doi: 10.1007/s11427-020-1802-y
|
[54] |
CHUCK GS, BROWN PJ, MEELEY R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation[J]. Proceedings of the national academy of sciences, 2014, 111(52):18775-18780.
doi: 10.1073/pnas.1407401112
URL
|
[55] |
DOEBLEY J, STEC A, HUBBARD L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624):485-488.
doi: 10.1038/386485a0
|
[56] |
BARBIER FF, DUN EA, KERR SC, et al. An update on the signals controlling shoot branching[J]. Trends in plant science, 2019, 24(3):220-236.
doi: S1360-1385(18)30288-7
pmid: 30797425
|
[57] |
SUN H, GUO X, QI X, et al. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply[J]. Plant journal, 2021, 106(3):649-660.
doi: 10.1111/tpj.v106.3
URL
|
[58] |
SUN H, TAO J, LIU S, et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice[J]. Journal of experimental botany, 2014, 65(22):6735-6746.
doi: 10.1093/jxb/eru029
pmid: 24596173
|
[59] |
YANG T, LIAN Y, KANG J, et al. The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 act as negative regulators in response to drought stress in arabidopsis[J]. Plant cell physiology, 2020, 61(8):1477-1492.
doi: 10.1093/pcp/pcaa066
URL
|
[60] |
LOU D, WANG H, LIANG G, et al. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in plant science, 2017, 8:993.
doi: 10.3389/fpls.2017.00993
pmid: 28659944
|
[61] |
LI W, NGUYEN K H, TRAN C D, et al. Negative roles of strigolactone-related SMXL6, 7 and 8 proteins in drought resistance in Arabidopsis[J]. Biomolecules, 2020, 10(4):607.
doi: 10.3390/biom10040607
URL
|
[62] |
孙卫健. 苹果独脚金内酯信号途径阻遏蛋白同源基因MdSMXL8.2的功能鉴定[D]. 泰安: 山东农业大学, 2020.
|