Journal of Agriculture ›› 2022, Vol. 12 ›› Issue (8): 22-26.doi: 10.11923/j.issn.2095-4050.cjas2020-0190
Previous Articles Next Articles
XU Yue1,2,3,4(), WANG Xi1,2,3(), SHEN Zimeng1,2,3,5
Received:
2020-08-28
Revised:
2020-12-14
Online:
2022-08-20
Published:
2022-09-22
Contact:
WANG Xi
E-mail:Joye0103@163.com;lagow@163.com
CLC Number:
XU Yue, WANG Xi, SHEN Zimeng. Research Progress of Alternative Splicing in Plants[J]. Journal of Agriculture, 2022, 12(8): 22-26.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas2020-0190
[1] |
WANG X Z. Mechanism of alternative splicing and its regulation (Review)[J]. Biomed rep, 2015, 3(2):152-158.
doi: 10.3892/br.2014.407 URL |
[2] |
SLOTTE T. Splicing Variation at a Flowering Locus Chomeolog is associated with flowering time variation in the tetraploid capsella bursa-pastoris[J]. Genetics, 2009, 183(183):337.
doi: 10.1534/genetics.109.103705 URL |
[3] | MASTRANGELO A M, MARONE D, LAIDò G, et al. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity[J]. Plant science, 2012, 185: 40-49 |
[4] |
STAIGER D, BROWN J W S. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. The plant cell, 2013, 25(10):3640-3656
doi: 10.1105/tpc.113.113803 URL |
[5] |
BARBAZUK W B, FU Y, Mcginnis K M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges[J]. Genome res, 2009, 18:1381-1392
doi: 10.1101/gr.053678.106 URL |
[6] |
KALYNA M, SIMPSON C G, SYED N H, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis[J]. Nucleic acids res, 2012; 40(6):2454-2469.
doi: 10.1093/nar/gkr932 URL |
[7] | KONCZ C, DEJONG F, VILLACORTA N, et al. The spliceosome-activating complex:molecular mechanisms underlying the function of a pleiotropic regulator[J]. Front plant sci, 2012; 3:9. |
[8] |
HOWARD J M, SANFORD J R. The RNAissance family: SR proteins as multifaceted regulators of gene expression[J]. Wiley interdiscip rev RNA, 2015, 6(1):93-110.
doi: 10.1002/wrna.1260 URL |
[9] |
YEAP W C, NAMASIVAYAM P, HO C L. HnRNP-like proteins as post-transcriptional regulators[J]. Plant sci, 2014, 227:90-100.
doi: 10.1016/j.plantsci.2014.07.005 URL |
[10] | WACHTER A, RÜhl C, STAUFFER E. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation[J]. Front plant sci, 2012; 3:81. |
[11] | 李稚锋, 王正志, 张成岗. 真核基因可变剪接研究现状与展望[J]. 生物信息学, 2004(2):35-38. |
[12] | 林鲁萍, 马飞, 王义权. 基因选择性剪接的生物信息学研究概况[J]. 遗传, 2005(6):145-150. |
[13] |
WANG L, XI Y, YU J, et al. A statistical method for thedetection of alternative splicing using RNA-seq[J]. PLoS one, 2010, 5(1):e8529.
doi: 10.1371/journal.pone.0008529 URL |
[14] |
LE K, MITSOURAS K, ROY M, et al. Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data,Nucleic Acids Res[J]. PloS one, 2010, 5(1):e8529.
doi: 10.1371/journal.pone.0008529 URL |
[15] | SHANG X, CAO Y, MA L. Alternative splicing in plant genes:a means of regulating the environmental fitness of plants[J]. Int.J.mol.sci, 2017, 18(2):432 |
[16] |
Kan Z, Rouchka E C, Gish W R, et al. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs[J]. Genome research, 2001, 11(5):889-900.
pmid: 11337482 |
[17] |
MODREK B, LEE C. A genomic view of alternative splicing.[J]. Nature genetics, 2001, 30(1):13-19.
doi: 10.1038/ng0102-13 URL |
[18] | SABLOK G, POWELL B, BRAESSLER J, et al. Comparative landscape of alternative splicing in fruit plants[J]. Current plant biology, 2017(9-10):29-36 |
[19] |
BLENCOWE B J. Alternative splicing: new insights from global analyses[J]. Cell, 2006, 126(1):37-47.
doi: 10.1016/j.cell.2006.06.023 URL |
[20] | 付畅, 黄宇. 转录组学平台技术及其在植物抗逆分子生物学中的应用[J]. 生物技术通报, 2011(6):40-46. |
[21] |
LODHA T D, BASAK J. Plant-pathogen interactions: what microarray tells about it?[J]. Mol biotechnol, 2012, 50(1):87-97.
doi: 10.1007/s12033-011-9418-2 URL |
[22] | 章天骄. 可变剪接的生物信息数据分析综述[J]. 生物信息学, 2012, 10(1):61-64. |
[23] |
崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35(7):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0374 |
[24] | 张丁予, 章婷曦, 王国祥. 第二代测序技术的发展及应用[J]. 环境科学与技术, 2016, 39(9):96-102. |
[25] |
高阳, 薛大伟, 钱前, 等. 二代测序技术在水稻基因组学和转录组学研究中的应用[J]. 中国水稻科学, 2015, 29(2):208-214.
doi: 10.3969/j.issn.1001-7216.2015.02.013 |
[26] | 俞晓玲, 姜文倩, 郑玲, 等. 单分子测序技术及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47(1):5-16. |
[27] | 曹晨霞, 韩琬, 张和平. 第三代测序技术在微生物研究中的应用[J]. 微生物学通报, 2016, 43(10):2269-2276. |
[28] | VAN D, YAN J, DELPHINE N, et al. The third revolution in sequencing technology[J]. Trends in genetics, 2018:S0168952518300969-. |
[29] |
KUMAR K R, COWLEY M J, DAVIS R L. Next-Generation Sequencing and Emerging Technologies[J]. Semin thromb hemost, 2019, 45(7):661-673.
doi: 10.1055/s-0039-1688446 URL |
[30] |
FILICHKIN S A, PRIEST H D, GIVAN S A, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana[J]. Genome res, 2010, 20:45-58.
doi: 10.1101/gr.093302.109 URL |
[31] | 郭小勤, 李德葆. 植物前体mRNA的选择性剪接[J]. 农业生物技术学报, 2006(5):809-815. |
[32] | WERNEKE J M, CHATFIELD J M, OGREN W L. Alternative m RNAsplicing generates the tworibulosebisphosphate carboxy-lase/oxygenase activase polypeptides in spinach and Arabidopsis[J]. Plant cell, 1989, 1:815-825 |
[33] | 邢永强, 何泽学, 刘国庆, 等. 拟南芥不同组织基因表达及可变剪接差异分析[J]. 生物化学与生物物理进展, 2019, 46(11):1118-1129. |
[34] |
SHEN Y, ZHOU Z, WANG Z, et al. Global dissection of alternative splicing in paleopolyploid soybean[J]. Plant cell, 2014, 26(3):996-1008.
doi: 10.1105/tpc.114.122739 URL |
[35] |
CHURBANOV A, WINTERS-HILT S, KOONIN E V, et al. Accumulation of GC donor splice signals in mammals[J]. Biology Direct, 2008, 3(1):30.
doi: 10.1186/1745-6150-3-30 URL |
[36] |
THANARAJ T A, FRANCIS C. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions[J]. Nucleic acids research, 2001, 29(12):2581.
doi: 10.1093/nar/29.12.2581 URL |
[37] | WEI H, LOU Q, XU K, et al. Alternative splicingcomplexity contributes to genetic improvement of drought resistance in the ricemaintainer HuHan2B[J]. Sci Rep, 2017, 15, 7(1):11686. |
[38] |
LU T, LU G, FAN D, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq[J]. Genome research, 2010, 20(9):1238.
doi: 10.1101/gr.106120.110 URL |
[39] |
MEI W, LIU S, SCHNABLE J C, et al. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize[J]. Front plant sci, 2017, 8:694.
doi: 10.3389/fpls.2017.00694 URL |
[40] |
TIAN L, ZHAO X, LIU H, et al. Alternative splicing of ZmCCA1 mediates drought response in tropical maize[J]. PLoSOne, 2019, 14(1):e0211623.
doi: 10.1371/journal.pone.0211623 URL |
[41] |
ZHU G, LI W, ZHANG F, et al. RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii[J]. BMC genomics, 2018, 19(1):73.
doi: 10.1186/s12864-018-4449-8 URL |
[42] |
LIU Z, QIN J, TIAN X, et al. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.)[J]. Plant biotechnol J, 2018, 16(3):714-726.
doi: 10.1111/pbi.12822 URL |
[43] |
STAIGER D, BROWN J W S. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. Plant cell, 2013, 25:3640-3656.
doi: 10.1105/tpc.113.113803 URL |
[44] |
FILICHKIN S, PRIEST H D, MEGRAW M, et al. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress[J]. Curr opin plant biol, 2015, 24:125-135.
doi: 10.1016/j.pbi.2015.02.008 URL |
[45] |
LALOUM T, GUIOMAR Martín, DUQUE P. Alternative splicing control of abiotic stress responses[J]. Trends in plant science, 2017, 23(2):140.
doi: 10.1016/j.tplants.2017.09.019 URL |
[46] |
CHANG C Y, LIN W D, TU S L. Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens[J]. Plant physiol, 2014, 165,826-840.
doi: 10.1104/pp.113.230540 URL |
[47] | 肖燕, 姚珺玥, 刘冬, 等. 甘蓝型油菜响应低氮胁迫的表达谱分析[J]. 作物学报, 2020, 46(10):1526-1538. |
[48] | 韩林宏, 江海洋. 植物选择性剪接研究进展[J]. 分子植物育种, 2020, 18(10):3259-3265. |
[49] |
GU J, LI W, WANG S, et al. Differential alternative splicing genes in response to boron deficiency in brassica napus[J]. Genes (Basel), 2019, 10(3):224.
doi: 10.3390/genes10030224 URL |
[1] | ZUO Xiufeng, JIAO Yuxia, CAO Zeng, ZHAO Yanli, ZHU Qingrong, WANG Xianghui, HU Yinghua. Analysis on the Cause of ‘Stay Green’ of Summer Soybean in Southwest Shandong Province [J]. Journal of Agriculture, 2022, 12(7): 12-16. |
[2] | LIU Qiongfeng, ZHOU Junyu, WU Haiyong, GU Yu, LI Mingde, HONG Xi, WU Jinshui, XIAO He’ai. Application Status of Integrated Planting-Breeding Circular Agriculture Mode in China [J]. Journal of Agriculture, 2022, 12(7): 81-88. |
[3] | WANG Xiaodan, WANG Yaliang, ZHANG Yuping, XIANG Jing, ZHANG Yikai, CHEN Huizhe. Nitrogen Application: Effect on Yield and Quality of Machine Transplanted Large Panicle Single Cropping Rice [J]. Journal of Agriculture, 2022, 12(6): 1-4. |
[4] | ZHANG Xinfeng, ZHANG Guo, YU Julong, FANG Jichao, LUO Guanghua, ZHU Feng, SHU Zhaolin. Pymetrozine Compound Insecticides: Control Effect on Rice Planthopper and Safety for Spiders [J]. Journal of Agriculture, 2022, 12(6): 33-38. |
[5] | WANG Yanping, ZHANG Kun, ZHANG Jiaxing, YAO Ye, JIANG Fengyou. Effects of Climatic Conditions at Different Sowing Dates on Main Agronomic Characters and Quality of Soybean in Northeast Inner Mongolia [J]. Journal of Agriculture, 2022, 12(6): 60-65. |
[6] | LIAO Feifei, LIU Xinggui, WANG Kexiu, DU Yongli, XIONG Hu, ZHANG Deyin. Gibberellin and Foliar Fertilizer: Effects on Pre-basic Seeds of Potato Production by Aeroponics [J]. Journal of Agriculture, 2022, 12(4): 18-23. |
[7] | HAN Lihong, LIU Chao, YANG Yunjin, TANG Lizhou. Effect of Different Light Intensities on the Growth and Chlorophyll Fluorescence Characteristics of Luoping Zingiber offiinale [J]. Journal of Agriculture, 2022, 12(4): 47-53. |
[8] | ZHU Tingyan, WU Yingjiao, LI Wenchen, DONG Guoqing, HUANG Yun, LI Shujun. Climate Suitability of Tomato in Ningxia: Variation Characteristics [J]. Journal of Agriculture, 2022, 12(4): 67-74. |
[9] | DENG Jianwei, JIN Yanzhao. The Optimized Sequence of Leading Crops in Shiyang River Basin Based on Comprehensive Benefits [J]. Journal of Agriculture, 2022, 12(3): 35-39. |
[10] | WU Jianbin, CHEN Kunhao, CHEN Muxi, CHEN Changming. Isolated Microspore Culture of Brassica Vegetables: A Review [J]. Journal of Agriculture, 2022, 12(3): 44-49. |
[11] | LI Guoqing, LI Guoyu, CONG Xinjun, LI Ni. Intermission Seeding Under Millet and Peanut Intercropping: Effects on the Agronomic Traits and Yield of Millet [J]. Journal of Agriculture, 2022, 12(3): 6-10. |
[12] | LIU Xiaoqing, CHEN Huatao, ZHANG Hongmei, CUI Xiaoyan, YUAN Xingxing, CHEN Xin. A New Spring Sowing Fresh Soybean Variety ‘Sukui No.3’ with High Yield and SMV Resistance: Breeding and Cultivation Techniques [J]. Journal of Agriculture, 2022, 12(2): 16-19. |
[13] | DUAN Chuanhong, ZHANG Jingli, WANG Xiaoyun, YAN Yan, HU Jie, RUN Jing. Analysis of the Canopy Lines and Color of Landscape Plant Communities Based on Dimension Characteristics [J]. Journal of Agriculture, 2022, 12(2): 60-64. |
[14] | QIU Yao, TAN Shiyong, WEN Yaxiong, XU Xuewen. Organic Fertilizer Has Great Potential in the Goal of ‘Peaking Carbon Emissions and Achieving Carbon Neutrality’ [J]. Journal of Agriculture, 2022, 12(12): 34-39. |
[15] | LIU Xiao, GENG Jun, XING Maode, LIU Ping, LIU Chao. Application of Trap Plants in Cotton Pest Control [J]. Journal of Agriculture, 2022, 12(10): 21-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||