[1] |
BELANGER M, ROGER J, CARTOLARO P. Detection of powdery mildew in grapevine using remotely sensed UV-induced fluorescence[J]. International journal of remote sensing, 2005, 29(6):1707-1724.
doi: 10.1080/01431160701395245
URL
|
[2] |
李华. 葡萄优质抗病育种——理论与方法研究[M]. 北京: 中国农业出版社, 1999:57-65.
|
[3] |
GROVE G. Perennation of Uncinula necator in vineyards of Eastern Washington[J]. Phytopathology, 2004, 88(3):242-247.
|
[4] |
GADOURY D M, CADLE-DAVIDSON L, WILCOX W F. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph[J]. Molecular plant pathology, 2012, 53(4):1-16.
|
[5] |
EIBACH R, BOUQUET A, BOURSIQUOT J M. Investigations on the inheritance features to mildew diseases[J]. Acta horticulturae sinica, 2000, 528:455-465.
|
[6] |
李华, 张振文. 欧亚种葡萄白粉病抗性及稳定性研究[J]. 园艺学报, 1992, 19(1):23-28.
|
[7] |
刘会宁, 郑琦. 葡萄对白粉病的抗性[J]. 果树学报, 2002, 19(6):430-432.
|
[8] |
贾静怡, 张玮, 燕继晔. 葡萄白粉病抗性鉴定方法优化及品种抗性评价[J]. 植物保护, 2021, 47(1),160-164.
|
[9] |
高琪, 李兴红, 刘梅. 我国葡萄园病害发生危害及防治用药情况调查[J]. 中国果树, 2021, 215(9):97-102.
|
[10] |
ODDS E C, BROWN A J, GOW N A. Antifungal agents: mechanisms of action[J]. Trends microbiology, 2013, 11(6):272-279.
doi: 10.1016/S0966-842X(03)00117-3
URL
|
[11] |
ABE E, USUI K, HIRAM T. Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae[J]. Biochemistry, 2009, 48(36):8494-8504.
doi: 10.1021/bi900578y
URL
|
[12] |
何秀萍, 张博润. 微生物麦角固醇的研究进展[J]. 微生物学通报, 1998, 25(3):166-169.
|
[13] |
GEORGOPAPADAKOU N H, WALSH T J. Human mycoses: Drugs and targets for emerging pathogens[J]. Science, 1994, 264:371-373.
pmid: 8153622
|
[14] |
LIANG Q, WEI L, XU B. Induction of resistance of Podosphaera xanthii (hull-less pumpkin powdery mildew) to triazole fungicides and its resistance mechanism[J]. PloS one, 2022, 17(2):e0263068.
doi: 10.1371/journal.pone.0263068
URL
|
[15] |
杜庆志, 张建业, 刘翔. 不同杀菌剂对小麦白粉病菌室内毒力测定及混配增效药剂筛选[J]. 植物保护, 2021, 47(6):327-331.
|
[16] |
KEINATH A P. Efficacy of fungicides against powdery mildew on watermelon caused by Podosphaera xanthii[J]. Crop protection, 2015, 75:70-76.
doi: 10.1016/j.cropro.2015.05.013
URL
|
[17] |
COLCOL J F, RALLOS L E, BAUDOIN A B. Sensitivity of Erysiphe necator to demethylation inhibitor fungicides in Virginia[J]. Plant disease, 2012, 96(1):111-116.
doi: 10.1094/PDIS-12-10-0883
URL
|
[18] |
李宝燕, 栾炳辉, 石洁. 胶东地区葡萄白腐病菌对吡唑醚菌酯的敏感性及与其他4种药剂的敏感性比较[J]. 农药学学报, 2020, 22(6):959-966.
|
[19] |
叶佳, 张传清. 葡萄炭疽病菌对甲基硫菌灵、戊唑醇和醚菌酯的敏感性检测[J]. 农药学学报, 2012, 14(1):111-114.
|
[20] |
BAUDOIN A, OLAYA G, DELMOTTE F. QoI resistance of Plasmopara viticola and Erysiphe necator in the mid-Atlantic United States[J]. Plant health progress, 2008, 9(1):25.
doi: 10.1094/PHP-2008-0211-02-RS
URL
|
[21] |
PINTYE A, NÉMETH M Z, MOLNAR O. Improved DNA extraction and quantitative real-time PCR for genotyping Erysiphe necator and detecting the DMI fungicide resistance marker A495T, using single ascocarps[J]. Phytopathology mediterranea, 2020, 59:97-106.
|
[22] |
TOFFOLATTI S L, SERRATI L, SIEROTZKI H, et al. Assessment of QoI resistance in Plasmopara viticola oospores[J]. Pest management science, 2007, 63(2):194-201.
doi: 10.1002/(ISSN)1526-4998
URL
|
[23] |
FRAAIJE B A, BUTTER J A, COEHLO J M, et al. Following the dynamics of strobilurin resistance in Blumeria graminis f. sp. tritici using quantitative allele-specific real-time PCR measurements with the fluorescent dye SYBR Green I[J]. Plant pathology, 2002, 51(1):45-54.
doi: 10.1046/j.0032-0862.2001.00650.x
URL
|
[24] |
RALLOS L, BAUDOIN A B. Co-occurrence of two allelic variants of CYP51 in Erysiphe necator and their correlation with over-expression for DMI resistance[J]. PLoS one, 2016, 11(2):1341-1388.
|
[25] |
DELYE C, BOUSSET L, CORIO-COSATET M F. PCR cloning and detection of point mutations in the eburicol 14 alpha-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a recalcitrant fungus[J]. Current genetics, 1998, 34(5):399-403.
doi: 10.1007/s002940050413
URL
|
[26] |
YAN L, YANG Q, ZHOU Y, et al. A real-PCR assay for quantification of the Y136F allele in the CYP51 gene associated with Blumeria graminis f. sp. tritici resistance to sterol demethylase inhibitors[J]. Crop protection, 2009, 28(5):376-280.
doi: 10.1016/j.cropro.2008.12.011
URL
|
[27] |
KRALIK P, RICCHI M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything[J]. Front microbiology, 2017, 8:108.
|
[28] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR[J]. Methods, 2002, 25(4):402-408.
doi: 10.1006/meth.2001.1262
URL
|
[29] |
MILLER T C, GUBLER W D. Sensitivity of California isolates of Uncinula necator to trifloxystrobin and spiroxamine, and update on triadimefon sensitivity[J]. Plant disease, 2004, 88(11):1205-1212.
doi: 10.1094/PDIS.2004.88.11.1205
URL
|
[30] |
ERICKSON E O, WILCOX W F. Distributions of sensitivities to three sterol demethylation inhibitor fungicides among populations of Uncinula necator sensitive and resistant to triadimefon[J]. Phytopathology, 1997, 87(8):784-791.
doi: 10.1094/PHYTO.1997.87.8.784
URL
|
[31] |
GUBLER W D, YPEMA H L, OUIMETTE D G. Occurrence of resistance in Uncinula necator to triadimefon, myclobutanil, and fenarimol in California grapevines[J]. Plant disease, 1996, 80(8):902-909.
doi: 10.1094/PD-80-0902
URL
|
[32] |
NORTHOVER J, HOMEYER G A. Detection and management of myclobutanil-resistant grapevine powdery mildew (Uncinula necator) in Ontario[J]. Canadian journal of plant pathology, 2001, 23(4):337-345.
doi: 10.1080/07060660109506954
URL
|