[1] 白博. Cu2+/Ce4+/TiO2复合纳米微粒光催化降解农药废水的试验研究[J]. 辽宁化工, 2012, 41(5): 31-32+58. [2] 束放, 熊延坤. 我国农药生产现状和农药减量使用的重要意义[J]. 山东农药信息, 2016(2): 18-20. [3] 陈晓明, 王程龙, 薄瑞, 等. 中国农药使用现状及对策建议[J]. 农药科学与管理, 2016, 37(2): 4-8. [4] Aragay G, Pino F, Merko?i A. Nanomaterials for sensing and destroying pesticides[J]. Chemical reviews, 2012, 112(10): 5317-5338. [5] 江兰, 郑飞, 冷鹏飞,等. 纳米农药的研究进展[J]. 广东农业科学, 2010, 37(5): 97-100. [6] 陈小军, 徐汉虹, 胡珊,等. 农药光催化降解研究进展[J]. 农药, 2006, 45(6): 381-384. [7] 刘祥英, 邬腊梅, 柏连阳,等. TiO2光催化降解农药研究新进展[J]. 中国农学通报, 2010, 26(12): 203-208. [8] Echavia G R M, Matzusawa F, Negishi N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel[J]. Chemosphere, 2009, 76(5): 595-600. [9] Saien J, Khezrianjoo S. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: optimization, kinetics and toxicity studies[J]. Journal of Hazardous Materials, 2008, 157(2): 269-276. [10] 陈建秋, 王铎, 娄红瑞, 等. 多菌灵和五氯酚钠的光降解和光催化降解初探[J]. 现代农药, 2006, 5(2): 38. [11] 宋秀兰, 姚伟峰, 吴一平. 半导体光催化的应用研究[J]. 上海电力学院学报, 2012, 28(1): 81-85. [12] Byrne J A, Dunlop P S M, Hamilton J W J, et al. A review of heterogeneous photocatalysis for water and surface disinfection[J]. Molecules, 2015, 20(4): 5574-5615. [13] Dong S, Feng J, Fan M, et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review[J]. RSC Advances, 2015, 5(19): 14610-14630. [14] 苏茜, 张勇. 二氧化钛光催化降解有机磷农药的机理和影响因素[J]. 广州化学, 2005, 30(1): 52-57. [15] Wang Y, Sun C, Zhao X, et al. The application of nano-TiO2 photo semiconductors in agriculture[J]. Nanoscale Research Letters, 2016, 11(1): 529. [16] Burrows H D, Santaballa J A, Steenken S. Reaction pathways and mechanisms of photodegradation of pesticides[J]. Journal of photochemistry and photobiology B: Biology, 2002, 67(2): 71-108. [17] Yu B, Zeng J, Gong L, et al. Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film[J]. Talanta, 2007, 72(5): 1667-1674. [18] 李爽, 张兰英, 王显胜,等. 二氧化钛光催化降解地下水中的六六六[J]. 吉林大学学报理学版, 2007, 45(1): 153-156. [19] 余彬彬. 有机氯农药在纳米TiO2中的光催化降解研究[D]. 厦门大学, 2007. [20] Quan X, Zhao X, Chen S, et al. Enhancement of p, p′-DDT photodegradation on soil surfaces using TiO2 induced by UV-light[J]. Chemosphere, 2005, 60(2): 266-273. [21] Ananpattarachai J, Kajitvichyanukul P. Photocatalytic degradation of p, p′-DDT under UV and visible light using interstitial N-doped TiO2[J]. Journal of Environmental Science and Health, Part B, 2015, 50(4): 247-260. [22] Ye M, Chen Z, Wang W, et al. Hydrothermal synthesis of TiO2 hollow microspheres for the photocatalytic degradation of 4-chloronitrobenzene[J]. Journal of hazardous materials, 2010, 184(1): 612-619. [23] Affam A C, Chaudhuri M. Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis[J]. Journal of environmental management, 2013, 130: 160-165. [24] Wu M, Deng J, Li J, et al. Simultaneous biological-photocatalytic treatment with strain CDS-8 and TiO2 for chlorothalonil removal from liquid and soil[J]. Journal of Hazardous Materials, 2016, 320: 612-619. [25] Moradas G, Auresenia J, Gallardo S, et al. Biodegradability and toxicity assessment of trans-chlordane photochemical treatment[J]. Chemosphere, 2008, 73(9): 1512-1517. [26] Tapia-Orozco N, Rodríguez Vázquez R. Photoactive TiO2 films formation by drain coating for endosulfan degradation[J]. International Journal of Photoenergy, 2013, 2013. [27] Thomas J, Kumar K P, Chitra K R. Synthesis of Ag doped nano TiO2 as efficient solar photocatalyst for the degradation of endosulfan[J]. Advanced Science Letters, 2011, 4(1): 108-114. [28] Rani M, Shanker U, Jassal V. Recent strategies for removal and degradation of persistent toxic organochlorine pesticides using nanoparticles: A review[J]. Journal of Environmental Management, 2017, 190: 208-222. [29] 邱常义, 马维新. 纳米二氧化钛光催化降解有机磷农药的研究[J]. 江西化工, 2008(1): 49-51. [30] 殷晓梅, 王欣, 雷磊, 等. 有机磷农药纳米TiO2光催化降解反应器的优化设计[J]. 农业工程学报, 2012, 28(12): 251-256.YIN Xiao-mei, WANG Xin, LEI Lei, et al. Optimization of nano-TiO2 photocatalytic degradation reactor for organophosphorus pesticides[J]. Chinese Journal of Agricultural Engineering, 2012, 28(12): 251-256. [31] 王琰, 崔建宇, 胡林, 等. 悬浮态TiO2静止光催化降解有机磷农药[J]. 中国农业大学学报, 2008, 13(2): 73-77. [32] Evgenidou E, Konstantinou I, Fytianos K, et al. Photocatalytic oxidation of methyl parathion over TiO2 and ZnO suspensions[J]. Catalysis Today, 2007, 124(3): 156-162. [33] Evgenidou E, Konstantinou I, Fytianos K, et al. Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism[J]. Journal of hazardous materials, 2006, 137(2): 1056-1064. [34] Liu W, Chen S, Zhao W, et al. Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide[J]. Desalination, 2009, 249(3): 1288-1293. [35] 骆爱兰. 拟除虫菊酯类农药残留ELISA检测及消解去除研究[D]. 扬州大学, 2004. [36] 陈梅兰, 陈金缓. TiO2 光催化降解低浓度溴氰菊酯[J]. 环境污染与防治, 2000, 22(1): 13-14. [37] 李焱. 溴氰菊酯在茶叶中的辐照降解研究[D]. 安徽农业大学, 2007. [38] Lin L, Xie M, Liang Y, et al. Degradation of cypermethrin, malathion and dichlorovos in water and on tea leaves with O3/UV/TiO2 treatment[J]. Food control, 2012, 28(2): 374-379. [39] Yao B H, Zheng H L, Yang L Q, et al. Studies on preparation of CdS/TiO2/Float pearls coupled photocatalyst and degradation of beta-cypermethrin[J]. Guang pu xue yu guang pu fen xi= Guang pu, 2007, 27(5): 1010-1014. [40] Kuo W S, Chiang Y H, Lai L S. Solar photocatalysis of carbaryl rinsate promoted by dye photosensitization[J]. Dyes and Pigments, 2008, 76(1): 82-87. [41] Alalm M G, Ookawara S, Fukushi D, et al. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin[J]. Journal of hazardous materials, 2016, 302: 225-231. [42] Fenoll J, Hellín P, Flores P, et al. Degradation intermediates and reaction pathway of carbofuran in leaching water using TiO2 and ZnO as photocatalyst under natural sunlight[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251: 33-40. [43] Wang Q, Lemley A T. Oxidation of carbaryl in aqueous solution by membrane anodic Fenton treatment[J]. Journal of agricultural and food chemistry, 2002, 50(8): 2331-2337. [44] Kanan M C, Kanan S M, Austin R N, et al. Photodecomposition of carbaryl in the presence of silver-doped zeolite Y and Suwannee River natural organic matter[J]. Environmental science technology, 2003, 37(10): 2280-2285. [45] Liu X, Kang Y, Luo D. Synthesis of novel Au/FeVO4/Bi2O3 heterojunction for efficient visible-light-driven photocatalysis[J]. Materials Letters, 2016, 185: 189-192. [46] Kiss A, Virág D. Photostability and photodegradation pathways of distinctive pesticides[J]. Journal of environmental quality, 2009, 38(1): 157-163. [47] Sarasidis V C, Plakas K V, Patsios S I, et al. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters[J]. Chemical Engineering Journal, 2014, 239: 299-311. [48] Oller I, Malato S, Sánchez-Pérez J A, et al. Detoxification of wastewater containing five common pesticides by solar AOPs–biological coupled system[J]. Catalysis Today, 2007, 129(1): 69-78. [49] Angthararuk D, Sutthivaiyakit P, Blaise C, et al. Photo-catalysis of bromacil under simulated solar light using Au/TiO2: evaluation of main degradation products and toxicity implications[J]. Environmental Science and Pollution Research, 2015, 22(2): 1468-1479. [50] Reddy P V L, Kim K H. A review of photochemical approaches for the treatment of a wide range of pesticides[J]. Journal of hazardous materials, 2015, 285: 325-335. [51] 燕红芳, 王敬国, 慕康国,等. 镧掺杂纳米TiO2应用助剂筛选及其对农药残留的光催化降解效果[J]. 中国稀土学报, 2012, 30(4): 58-63. [52] 梁春华. 铒掺杂二氧化钛光催化降解甲胺磷农药的研究[J]. 吉林农业大学学报, 2012, 34(5): 536-539. [53] 金星海. 改性TiO2光催化降解二苯醚类农药的研究[D]. 黑龙江大学, 2010.
|