农学学报 ›› 2020, Vol. 10 ›› Issue (2): 75-80.doi: 10.11923/j.issn.2095-4050.cjas20190500057
所属专题: 水稻
• 农业工程 农业机械 生物技术 食品科学 • 上一篇 下一篇
收稿日期:
2019-05-29
修回日期:
2019-09-19
出版日期:
2020-02-24
发布日期:
2020-02-24
通讯作者:
周元昌,王缨
E-mail:zwy_2002@163.com;492724648@qq.com
作者简介:
沈学良,男,1993年出生,山东临沂人,硕士,研究方向:作物生物技术。通信地址:350003 福建省福州市鼓楼区五四路247号 农科院高新技术大楼1108,Tel:0591-87863144,E-mail:shenxl1@163.com。
基金资助:
Shen Xueliang1,2, Tian Guanglei1, Zhou Yuanchang1(), Wang Ying2()
Received:
2019-05-29
Revised:
2019-09-19
Online:
2020-02-24
Published:
2020-02-24
Contact:
Yuanchang Zhou,Ying Wang
E-mail:zwy_2002@163.com;492724648@qq.com
摘要:
为了阐明水稻品种与稻田甲烷排放的关系,为培育低甲烷水稻品种提供科学依据。本研究从水稻植株形态特征和生物学特性等方面,论述水稻植株与甲烷排放的关系。水稻根系主要通过根系分泌物和根系泌氧能力二个方面影响甲烷气体的生成和氧化;水稻分蘖特性主要影响甲烷气体的排放;水稻叶片则通过光合作用和蒸腾作用二个方面分别影响甲烷气体的产生和排放;水稻籽粒的灌浆特性主要通过与根系争夺碳水化合物而影响甲烷的产量。这些因素既相互独立又相互协调影响水稻稻田的甲烷排放。
中图分类号:
沈学良, 田光蕾, 周元昌, 王缨. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 2020, 10(2): 75-80.
Shen Xueliang, Tian Guanglei, Zhou Yuanchang, Wang Ying. Rice Biological Characteristics: Effects on Methane Emission from Paddy Fields[J]. Journal of Agriculture, 2020, 10(2): 75-80.
[1] | Edenhofer O, Seyboth K . Intergovernmental Panel on Climate Change (IPCC)[J]. Encyclopedia of Energy Natural Resource & Environmental Economics, 2013,26(2):48-56. |
[2] | 何群华, 乐向晖 . 全球变暖对农作物影响及对策的研究进展[J]. 陕西农业科学, 2008,54(5):121-124. |
[3] | 郭庆春, 何振芳, 李力 . 全球气候变化对农业的影响[J]. 湖南农业科学, 2011(19):61-64. |
[4] |
Kirschke S, Bousquet P, Ciais P , et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013,6(10):813-823.
doi: 10.1038/NGEO1955 URL pmid: 30733299 |
[5] | Neue H U, Latin R S, Wassmann R , et al. Effect of rice cultivates on methane emission[J]. IRRN, 1994,19(3):32-33. |
[6] |
Peng S, Khush G S, Virk P , et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008,108(1):32-38.
doi: 10.1016/j.fcr.2008.04.001 URL |
[7] | Xiong W, Marijn V D V, Holman I P , et al. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China ?[J]. Agriculture, Ecosystems & Environment, 2014,196:125-136. |
[8] |
Yoshinaga S, Takai T, Arai-Sanoh Y , et al. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan[J]. Field Crops Research, 2013,150:74-82.
doi: 10.1016/j.fcr.2013.06.004 URL |
[9] | Bharali A, Baruah K K, Gogoi N . Potential option for mitigating methane emission from tropical paddy rice through selection of suitable rice varieties[J]. Crop and Pasture Science, 2017,68(5):421-433. |
[10] |
Qin X, Yue Li, Wang H , et al. Effect of rice cultivars on yield-scaled methane emissions in a double rice field in South China[J]. Journal of Integrative Environmental Sciences, 2015,12(sup1):47-66.
doi: 10.1080/1943815X.2015.1118388 URL |
[11] | 邵可声, 李震 . 水稻品种以及施肥措施对稻田甲烷排放的影响[J]. 北京大学学报:自然科学版, 1996,32(4):505-513. |
[12] | 王建辉 . 水稻根系的作用及促根生长技术措施[J]. 吉林农业, 2013(11):39-39. |
[13] | 林敏, 尤崇杓 . 水稻根分泌物及其与粪产碱菌的相互作用[J]. 中国农业科学, 1989,22(6):6-12. |
[14] |
Aulakh M S, Wassmann R, Bueno C , et al. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil[J]. Plant and Soil, 2001,230(1):77-86.
doi: 10.1023/A:1004817212321 URL |
[15] |
Aulakh M . Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars[J]. Plant Biology, 2001,3(2):139-148.
doi: 10.1055/s-2001-12905 URL |
[16] | 王大力, 林伟宏 . CO2浓度升高对水稻根系分泌物的影响——总有机碳、甲酸和乙酸含量变化[J]. 生态学报, 1999,19(4):570-572. |
[17] |
Lu Y, Wassmann R, Neue H U , et al. Methanogenic responses to exogenous substrates in anaerobic rice soils[J]. Soil Biology & Biochemistry, 2000,32(11):1683-1690.
doi: 10.1016/S0038-0717(00)00085-7 URL |
[18] |
Kimura, Makoto, Murase , et al. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4)[J]. Soil Biology & Biochemistry, 2004,36(9):1399-1416.
doi: 10.1016/j.soilbio.2004.03.006 URL |
[19] | 孙会峰, 周胜, 陈桂发 , 等. 水稻品种对稻田CH4和N2O排放的影响[J]. 农业环境科学学报, 2015,34(8):1595-1602. |
[20] | 王天龙, 杨宁, 任万辉 . 清远地区晚稻田甲烷排放的实验[J]. 广东气象, 2007,29(3):42-44. |
[21] | 孟冬梅 . 水稻根系通气组织的泌氧能力研究[D]. 北京:北京林业大学, 2008. |
[22] | King G M . Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics[M]. New York:Advances in Microbial Ecology, 1992: 431-468. |
[23] | 曹云英, 朱庆森, 郎有忠 , 等. 水稻品种及栽培措施对稻田甲烷排放的影响[J]. 江苏农业研究, 2000,21(3):22-27. |
[24] | 刘依依, 傅志强, 龙文飞 , 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究[J]. 农业现代化研究, 2015,36(6):1105-1111. |
[25] | 傅志强, 朱华武, 陈灿 , 等. 水稻根系生物特性与稻田温室气体排放相关性研究[J]. 农业环境科学学报, 2011,30(12):2416-2421. |
[26] | Wang B, Adachi K . Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission[J]. Nutr.cycl.agroecosys, 2000,58(1/3):349-356. |
[27] | 阎丽娜, 李霞 . 水稻对稻田甲烷排放的影响[J]. 中国农学通报, 2008,24(10):471-475. |
[28] | Ke M A, Qiu Q, Yahai L U . Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010,16(11):3085-3095. |
[29] | 钟娟, 傅志强, 刘莉 , 等. 水稻植株甲烷传输能力与根系特性的相关性分析[J]. 作物杂志, 2017(4):105-112. |
[30] | Tanaka N, Yutani K, Aye T , et al. Effect of broken dead culms of phragmites australison radial oxygen loss in relation to radiation and temperature[J]. Hydrobiologia, 2007,583(1):165-172. |
[31] |
Baruah K K, Gogoi B, Gogoi P . Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy[J]. Physiology & Molecular Biology of Plants An International Journal of Functional Plant Biology, 2010,16(1):79-91.
doi: 10.1007/s12298-010-0010-1 URL pmid: 23572957 |
[32] | 任丽新, 王庚辰, 张仁健 , 等. 成都平原稻田甲烷排放的实验研究[J]. 大气科学, 2002,26(6):731-733. |
[33] | 徐雨昌, 王增远, 李震 , 等. 不同水稻品种对稻田甲烷排放量的影响[J]. 植物营养与肥料学报, 1999,5(1):93-96. |
[34] |
Watanabe A . Influence of rice cultivar on methane emission from paddy fields[J]. Plant & Soil, 1995,176(1):51-56.
doi: 10.1111/j.1399-3054.2008.01137.x URL pmid: 18507814 |
[35] | 葛会敏, 陈璐, 于一帆 , 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015,31(3):160-166. |
[36] | Aulakh M S, Bodenbender J, Wassmann R , et al. Methane Transport Capacity of Rice Plants. II. Variations Among Different Rice Cultivars and Relationship with Morphological Characteristics[J]. Nutrient Cycling in Agroecosystems, 2000,58(1/3):367-375. |
[37] |
Gogoi N, Baruah K K, Gupta P K . Selection of rice genotypes for lower methane emission[J]. Agronomy for Sustainable Development, 2008,28(2):181-186.
doi: 10.1051/agro:2008005 URL |
[38] |
Mariko S, Harazono Y, Owa N , et al. Methane in flooded soil water and the emission through rice plants to the atmosphere[J]. Environmental and Experimental Botany, 1991,31(3):343-350.
doi: 10.1016/0098-8472(91)90059-W URL |
[39] |
Das K, Baruah K K . Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2010,134(2):303-312.
doi: 10.1111/j.1399-3054.2008.01137.x URL pmid: 18507814 |
[40] | 郑忠和, 邱金龙, 潘永红 . 水稻分蘖与产量[J]. 新农民月刊, 2011(2):64-64. |
[41] | Nayak, D. R, Adhya , et al. Methane emission from a flooded field of Eastern india as influenced by planting date and age of rice (Oryza sativa L.) seedlings[J]. Agriculture Ecosystems & Environment, 2016,115(1):79-87. |
[42] |
Wang B, Neue H U, Samonte H P . Role of rice in mediating methane emission[J]. Plant and Soil, 1997,189(1):107-115.
doi: 10.1023/A:1004219024281 URL |
[43] | Neue H U, Sass R L . Trace Gas Emissions from Rice Fields[J]. Biogeochemistry of Global Change, 1994,48:119-147. |
[44] | 曹云英, 许锦彪, 朱庆森 . 水稻叶片对甲烷传输速率的影响[J]. 山东农业科学, 2004(3):34-35. |
[45] |
Denier Van Der Gon H A C, Breemen N . Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants[J]. Biogeochemistry, 1993,21(3):177-190.
doi: 10.1007/BF00001117 URL |
[46] |
Nouchi I, Mariko S, Aoki K . Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants[J]. Plant Physiology, 1990,94(1):59-66.
doi: 10.1104/pp.94.1.59 URL pmid: 16667719 |
[47] | Zhang Y, Jiang Y, Li Z J , et al. Aboveground morphologicaltraits do not predict rice variety effects on CH4 emissions[J]. Agriculture, Ecosystems & Environment, 2015,208:86-93. |
[48] | 黑瑞, 田军仓, 马波 . 膜下滴灌旱作水稻甲烷的排放研究[J]. 灌溉排水学报, 2015,34(4):67-69. |
[49] | Öquist, M. G, Svensson, B . Vascular plants as regulators of methane emissions from a subarctic mire ecosystem[J]. Journal of Geophysical Research, 2002,107(D21):4580. |
[50] |
Tokida T, Fumoto T, Cheng W , et al. Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation[J]. Biogeosciences, 2010,7(9):2639-2653.
doi: 10.5194/bg-7-2639-2010 URL |
[51] |
Das K, Baruah K K . Association between contrasting methane emissions of two rice (Oryza sativa L.) cultivars from the irrigated agroecosystem of northeast India and their growth and photosynthetic characteristics[J]. Acta Physiologiae Plantarum, 2008,30(4):569-578.
doi: 10.1007/s11738-008-0156-4 URL |
[52] |
Yu K W, Chen G X, Xu H . Rice yield reduction by chamber enclosure: a possible effect on enhancing methane production[J]. Biology and Fertility of Soils, 2006,43(2):257-261.
doi: 10.1007/s00374-006-0096-3 URL |
[53] | Nouchi I, Mariko S . Mechanism of Methane Transport by Rice Plants[J]. Biogeochemistry of Global Change, 1993: 336-352. |
[54] |
Aulakh M S, Bodenbender J, Wassmann R , et al. Methane Transport Capacity of Rice Plants. I. Influence of Methane Concentration and Growth Stage Analyzed with an Automated Measuring System[J]. Nutrient Cycling in Agroecosystems, 2000,58(1/3):357-366.
doi: 10.1023/A:1009831712602 URL |
[55] |
Chanton J P, Whiting G J, Blair N E , et al. Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange[J]. Global Biogeochemical Cycles, 1997,11(1):15-27.
doi: 10.1029/96GB03761 URL |
[56] | Allen L H, Albrecht S L, Colón-Guasp , et al. Methane Emissions of Rice Increased by Elevated Carbon Dioxide and Temperature[J]. Journal of Environment Quality, 2003,32(6):1978. |
[57] | Xu S, Peter R. Jaffé, Mauzerall D L . A process-based model for methane emission from flooded rice paddy systems[J]. Ecological Modelling, 2007,205(3/4):475-491. |
[58] |
Das K, Baruah K K . Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2010,134(2):303-312.
doi: 10.1111/j.1399-3054.2008.01137.x URL pmid: 18507814 |
[59] |
Corton T M, Al E . Methane emission from irrigated and intensively managed rice fields in Central Luzon Philippines[J]. Nutrient Cycling in Agroecosystems, 2000,58(1/3):37-53.
doi: 10.1023/A:1009826131741 URL |
[60] |
Denier van der Gon, H. A. C, Kropff M J, Van Breemen N , et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields[J]. Proceedings of the National Academy of Sciences, 2002,99(19):12021-12024.
doi: 10.1073/pnas.192276599 URL pmid: 12189212 |
[61] |
Su J, Hu C, Yan X , et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015,523(7562):602-606.
doi: 10.1038/nature14673 URL pmid: 26200336 |
[62] | Jiang Y, Wang L L, Yan x J , et al. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China[J]. Rice Science, 2013,20(6):427-433. |
[63] | 傅志强, 黄璜, 谢伟 , 等. 高产水稻品种及种植方式对稻田甲烷排放的影响[J]. 应用生态学报, 2009,20(12):3003-3008. |
[64] | 黄农荣, 梁开明, 钟旭华 , 等. 南方低甲烷排放的高产水稻品种筛选与评价[J]. 农业环境科学学报, 2018,37(12):2854-2863. |
[1] | 何迷, 李小波, 黄静, 黄光福. 水稻叶面积指数与产量关系研究进展[J]. 农学学报, 2022, 12(8): 1-5. |
[2] | 蒙彦宇, 景艳杰, 周印富. 施氮量对玉米光合特性及灌浆特性的影响[J]. 农学学报, 2022, 12(8): 10-15. |
[3] | 李集勤, 袁清华, 刘阳, 文志强, 邱春仁, 张海霞, 马柱文. 八个外引烤烟品种在韶关生态烟区筛选及适宜性评价[J]. 农学学报, 2022, 12(7): 38-44. |
[4] | 樊俊, 王瑞, 徐大兵, 谭军. 腐殖酸基质对烟苗生长及根系形态特征的影响[J]. 农学学报, 2022, 12(7): 45-49. |
[5] | 严羽, 王维建, 姚宇阗, 陈宸, 仇俊, 张晓伟, 陈夕军. 几种生物制剂对有机水稻稻瘟病的防效及产量和品质的影响[J]. 农学学报, 2022, 12(7): 5-11. |
[6] | 刘兴舟, 李猛, 张建, 陈瑞佶, 付华, 马桂美, 周言虎, 庄小林. 玉米籽粒脱水及机收籽粒研究进展[J]. 农学学报, 2022, 12(7): 64-68. |
[7] | 于艳敏, 闫平, 武洪涛, 刘海英, 徐振华, 张书利, 吴立成, 杨忠良. 黑龙江省2019年新育成水稻品种品质性状分析[J]. 农学学报, 2022, 12(4): 1-5. |
[8] | 孙盈盈, 王超, 王瑞霞, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙宪印, 陈永军, 钱兆国, 吴科. 小麦倒伏原因、机理及其对产量和品质影响研究进展[J]. 农学学报, 2022, 12(3): 1-5. |
[9] | 刘晓月, 张燕, 葛燚, 刘能斌, 刘卫国. 常用矿物质材料对镉钝化稳定性研究[J]. 农学学报, 2022, 12(3): 40-43. |
[10] | 张婷, 汪宏毅, 廖晓玲, 柳均, 肖少红, 陈慧, 王康. 烤烟烟叶短期储存颜色变化分析[J]. 农学学报, 2022, 12(2): 36-39. |
[11] | 田正书, 罗延青, 迟旭春, 赵凯琴, 张云云, 符明联, 李劲峰. 早熟甘蓝型油菜抗裂角性鉴定及材料筛选[J]. 农学学报, 2022, 12(2): 40-46. |
[12] | 宋英博. 数字图像处理技术在叶面积测量中的应用[J]. 农学学报, 2022, 12(2): 73-75. |
[13] | 方克明, 肖欣, 江麟, 秦蕾影, 王美玲, 张露, 汪璐, 罗文汉, 章明. “籼改粳”稻产势与化肥减量增效方法试验效果[J]. 农学学报, 2022, 12(12): 12-17. |
[14] | 顾会战, 苟小梅, 蔡艳, 吴杰, 李涛, 叶想, 何佶弦, 张启莉, 王栋. 烤烟油菜轮作及平衡施肥对土壤速效钾和烟叶钾的影响[J]. 农学学报, 2022, 12(12): 23-27. |
[15] | 薛志伟, 黄青青, 杨春玲. 安阳周边农田土壤和小麦籽粒中重金属含量的相关及主成分分析[J]. 农学学报, 2022, 12(12): 28-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||