农学学报 ›› 2021, Vol. 11 ›› Issue (12): 74-79.doi: 10.11923/j.issn.2095-4050.cjas2020-0193
时丕彪(), 蒋润枝, 沈明晨, 顾闽峰, 王春云, 李亚芳, 顾小兵
收稿日期:
2020-09-02
修回日期:
2021-06-04
出版日期:
2021-12-20
发布日期:
2022-01-14
作者简介:
时丕彪,男,1989年出生,山东菏泽人,助理研究员,硕士,主要从事农作物新品种选育及分子育种研究。通信地址:224049 江苏省盐城市亭湖区黄尖镇南首新洋农业试验站,Tel:0515-82600928,E-mail: 基金资助:
SHI Pibiao(), JIANG Runzhi, SHEN Mingchen, GU Minfeng, WANG Chunyun, LI Yafang, GU Xiaobing
Received:
2020-09-02
Revised:
2021-06-04
Online:
2021-12-20
Published:
2022-01-14
摘要:
为研究南瓜对盐分胁迫的耐受性,采用水培法探讨不同浓度NaCl(0、50、100、150、200、250 mmol/L) 对南瓜幼苗各生长指标及光合特性参数的影响。结果表明,随着NaCl浓度的增加,南瓜幼苗的植株高度、鲜重和干重均呈逐渐下降的趋势,叶绿素含量、气孔导度(Gs)、净光合速率(Pn)和蒸腾速率(Tr)均呈现先升高后降低的趋势,相对离子渗透率(RIP)呈先降低后升高的趋势。0~100 mmol/L NaCl对南瓜幼苗生长无显著影响,而高于100 mmol/L时,对其存活和光合作用有显著影响。南瓜具有较强的耐盐性。
中图分类号:
时丕彪, 蒋润枝, 沈明晨, 顾闽峰, 王春云, 李亚芳, 顾小兵. 盐胁迫对南瓜幼苗生长及光合特性的影响[J]. 农学学报, 2021, 11(12): 74-79.
SHI Pibiao, JIANG Runzhi, SHEN Mingchen, GU Minfeng, WANG Chunyun, LI Yafang, GU Xiaobing. Effects of Salt Stress on the Growth and Photosynthetic Characteristics of Squash Seedlings[J]. Journal of Agriculture, 2021, 11(12): 74-79.
NaCl浓度/(mmol/L) | 苗高/cm | 根长/cm | 苗鲜重/g | 苗干重/g |
---|---|---|---|---|
0 | 24.80a | 22.73a | 4.050a | 0.386a |
50 | 22.90ab | 31.80a | 3.583ab | 0.373ab |
100 | 22.93ab | 31.27a | 3.470abc | 0.348ab |
150 | 21.90ab | 27.90a | 3.171bc | 0.331b |
200 | 23.33ab | 22.60a | 2.911c | 0.254c |
250 | 19.90b | 20.87a | 1.614d | 0.215c |
NaCl浓度/(mmol/L) | 苗高/cm | 根长/cm | 苗鲜重/g | 苗干重/g |
---|---|---|---|---|
0 | 24.80a | 22.73a | 4.050a | 0.386a |
50 | 22.90ab | 31.80a | 3.583ab | 0.373ab |
100 | 22.93ab | 31.27a | 3.470abc | 0.348ab |
150 | 21.90ab | 27.90a | 3.171bc | 0.331b |
200 | 23.33ab | 22.60a | 2.911c | 0.254c |
250 | 19.90b | 20.87a | 1.614d | 0.215c |
NaCl浓度/(mmol/L) | 叶绿素a | 叶绿素b | 总叶绿素 |
---|---|---|---|
0 | 1.25ab | 0.73cd | 1.98cd |
50 | 1.45a | 0.80c | 2.25bc |
100 | 1.34ab | 0.95b | 2.29b |
150 | 1.36ab | 1.38a | 2.74a |
200 | 1.17b | 0.62d | 1.79d |
250 | 0.41c | 0.25e | 0.66e |
NaCl浓度/(mmol/L) | 叶绿素a | 叶绿素b | 总叶绿素 |
---|---|---|---|
0 | 1.25ab | 0.73cd | 1.98cd |
50 | 1.45a | 0.80c | 2.25bc |
100 | 1.34ab | 0.95b | 2.29b |
150 | 1.36ab | 1.38a | 2.74a |
200 | 1.17b | 0.62d | 1.79d |
250 | 0.41c | 0.25e | 0.66e |
[1] | HANIN M, EBEL C, NGOM M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding[J]. Frontiers in Plant Science, 2016, 7:1787. |
[2] | 黄勇, 郭猛, 张红瑞, 等. 盐胁迫对石竹种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(12):105-111. |
[3] | MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry & Biophysics, 2005, 444(2):139-158. |
[4] | SHABALA S, BOSE J, HEDRICH R. Salt bladders: do they matter?[J]. Trends in Plant Science, 2014, 19:687-691. |
[5] |
KULCZYński B, GRAMZA M A. The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars[J]. Molecules, 2019, 24(18):3212.
doi: 10.3390/molecules24183212 URL |
[6] | SHEBL A, HASSAN A A, SALAMA D M, et al. Template-free microwave-assisted hydrothermal synjournal of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L)[J]. Heliyon, 2020, 6(3):e03596. |
[7] |
Kong Q S, Chen J L, Liu Y, et al. Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers[J]. Scientia Horticulturae, 2014, 175:150-155.
doi: 10.1016/j.scienta.2014.06.009 URL |
[8] | 王伟奇, 张蒙, 秦肇辰, 等. 南瓜耐盐性研究进展[J]. 中国蔬菜, 2020, 10:18-26. |
[9] | LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148:350-382. |
[10] |
SAKURABA Y, JEONG J, KANG M Y, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis[J]. Nature Communications, 2014, 5:4636.
doi: 10.1038/ncomms5636 URL |
[11] |
MUÑOZ H F R, GUEVARA G G R, CONTRERAS M M L, et al. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances[J]. Sensors, 2013, 13:10823-10843.
doi: 10.3390/s130810823 URL |
[12] |
ZHENG G S, FAN C Y, DI S K, et al. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science, 2017, 8:2125.
doi: 10.3389/fpls.2017.02125 URL |
[13] |
Zhao X, Bai X, Jiang C, et al. Phosphoproteomic analysis of two contrasting maize inbred lines provides insights into the mechanism of salt-stress tolerance[J]. International Journal of Molecular Sciences, 2019, 20(8):1886.
doi: 10.3390/ijms20081886 URL |
[14] | KESHAVARZI M H B. Effect of salt stress on germination and early seedling growth of savory (Satureja hortensis)[J]. Australian Journal of Basic and Applied Sciences, 2011, 5(12):3274-3279. |
[15] |
ZENG L, SHANNON M C. Salinity effects on seedling growth and yield components of rice[J]. Crop Science, 1998, 40:996-1003.
doi: 10.2135/cropsci2000.404996x URL |
[16] | MOHAMED I A A, SHALBY N, BAI C, et al. Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars[J]. Plants (Basel), 2020, 9(1):62. |
[17] |
TANAKA A, TANAKA R. Chlorophyll metabolism[J]. Current Opinion in Plant Biology, 2006, 9(3):248-255.
doi: 10.1016/j.pbi.2006.03.011 URL |
[18] |
PATTANAYAK G K, BISWAL A K, REDDY V S, et al. Light-dependent regulation of chlorophyll b biosynjournal in chlorophyllide a oxygenase overexpressing tobacco plants[J]. Biochemical and Biophysical Research Communications, 2005, 326(2):466-471.
doi: 10.1016/j.bbrc.2004.11.049 URL |
[19] |
RüDiger W. Chlorophyll metabolism: from outer space down to the molecular level[J]. Phytochemistry, 1997, 46(7):1151-1167.
doi: 10.1016/S0031-9422(97)80003-9 URL |
[20] |
Sairam R, Srivastava G. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J]. Plant Science, 2002, 162(6):897-904.
doi: 10.1016/S0168-9452(02)00037-7 URL |
[21] | 冯梅, 张世卿, 曹亚军, 等. 盐胁迫对红花种子萌发及幼苗的生理效应[J]. 江苏农业科学, 2020, 48(22):144-148. |
[22] |
CUI F, SUI N, DUAN G, et al. Identification of metabolites and transcripts involved in salt stress and recovery in peanut[J]. Frontiers in Plant Science, 2018, 9:217.
doi: 10.3389/fpls.2018.00217 URL |
[23] |
ALHARBY H F, AL-ZAHRANI H S, HAKEEM K R, et al. Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes[J]. Saudi Journal of Biological Sciences, 2019, 26(5):1053-1060.
doi: 10.1016/j.sjbs.2018.08.006 URL |
[24] |
YEO A R, CAPORN S J M, FLOWERS T J. The effect of salinity upon photosynjournal in rice (Oryza sativa L.): Gas exchange by individual leaves in relation to their salt content[J]. Journal of Experimental Botany, 1985, 36:1240-1248.
doi: 10.1093/jxb/36.8.1240 URL |
[25] |
HUSSAIN S, ZHANG J H, ZHONG C, et al. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. Journal of Integrative Agriculture, 2017, 16:2357-2374.
doi: 10.1016/S2095-3119(16)61608-8 URL |
[26] |
FRICKE W, AKHIYAROVA G, VESELOV D, et al. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves[J]. Journal of Experimental Botany, 2004, 55:1115-1123.
doi: 10.1093/jxb/erh117 URL |
[27] |
LEKKLAR C, SURIYA A D, PONGPANICH M, et al. Comparative genomic analysis of rice with contrasting photosynjournal and grain production under salt stress[J]. Genes, 2019, 10(8):562.
doi: 10.3390/genes10080562 URL |
[28] |
JAMES R A, RIVELLI A R, MUNNS R, et al. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat[J]. Functional Plant Biology, 2002, 29:1393-1403.
doi: 10.1071/FP02069 URL |
[29] |
Dionisio-Sese M L, Tobita S. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance[J]. Journal of Plant Physiology, 2000, 157:54-58.
doi: 10.1016/S0176-1617(00)80135-2 URL |
[30] |
Ma N, Hu C, Wan L, et al. Strigolactones improve plant growth, photosynjournal, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression[J]. Frontiers in Plant Science, 2017, 8:1671.
doi: 10.3389/fpls.2017.01671 URL |
[31] | Flexas J, Niinemets U, Gallé A, et al. Diffusional conductances to CO2 as a target for increasing photosynjournal and photosynthetic water-use efficiency[J]. Photosynjournal Research, 2013, 117(1-3):45-59. |
[32] |
NOUNJAN N, CHANSONGKROW P, CHAROENSAWAN V, et al. High performance of photosynjournal and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis[J]. Frontiers in Plant Science, 2018, 9:1135.
doi: 10.3389/fpls.2018.01135 URL |
[1] | 蒙彦宇, 景艳杰, 周印富. 施氮量对玉米光合特性及灌浆特性的影响[J]. 农学学报, 2022, 12(8): 10-15. |
[2] | 孙芹, 徐学欣, 邓肖, 朱紫鑫, 张玉璐, 高国龙, 盖红梅, 赵长星. 盐胁迫对小麦苗期荧光特性的影响及综合评价[J]. 农学学报, 2022, 12(6): 5-13. |
[3] | 屈洋, 王可珍, 刘洋, 罗艳, 杨清华, 梁福琴. 不同种植参数对夏大豆产量及光合效能的影响[J]. 农学学报, 2021, 11(8): 8-13. |
[4] | 张嘉祥, 国一凡, 张梅. 外源5-氨基乙酰丙酸对盐胁迫下玉米种子萌发及幼苗生长的影响[J]. 农学学报, 2021, 11(7): 7-12. |
[5] | 文卿琳, 刘绍东. 南疆无膜滴灌栽培对棉花出苗及生长指标的影响[J]. 农学学报, 2021, 11(6): 19-24. |
[6] | 温赛群, 袁光, 张智猛, 张冠初, 慈敦伟, 丁红, 徐扬, 姜常松, 戴良香. 花生品种苗期耐盐性评价与筛选[J]. 农学学报, 2021, 11(6): 29-35. |
[7] | 周海涛, 张艳阳, 赵孟圆, 李天亮, 曹丽霞, 张新军. S-诱抗素和黄腐酸对干旱胁迫下皮燕麦光合特性及产量的影响[J]. 农学学报, 2021, 11(2): 30-34. |
[8] | 符昌武, 王祖富, 宋家庆, 侯翔文, 覃潇, 戴曦, 袁谋智, 姚旺. 生物炭与水分调控对烤烟光合特性的影响[J]. 农学学报, 2021, 11(10): 69-74. |
[9] | 王利琴, 杨建春. 水肥耦合调控对胡麻苗期光合特性的影响[J]. 农学学报, 2020, 10(8): 19-22. |
[10] | 马永珍, 王芳, 王舰. 不同光周期处理对马铃薯组培苗生长和生理生化特性的影响[J]. 农学学报, 2020, 10(6): 15-21. |
[11] | 严美玲, 赵明, 崔明灼, 辛庆国, 孙晓辉, 王江春, 殷岩. 不同测墒补灌处理对冬小麦产量及光合特性的影响[J]. 农学学报, 2020, 10(4): 1-6. |
[12] | 李萍, 谢圣杰, 李明明, 贾亚涛, 冯万军, 邢国芳. 氮磷配施对玉米‘良玉188’光合特性及产量的影响[J]. 农学学报, 2020, 10(4): 14-20. |
[13] | 田永强,聂国伟,李 凯,张晓萍,戴丽蓉. 采后喷施叶面肥对温室甜樱桃叶片部分生理指标的影响[J]. 农学学报, 2019, 9(11): 34-37. |
[14] | 吕英忠,王新平,李小平. 不同基质对控根容器下苹果大苗生长和光合作用的影响[J]. 农学学报, 2018, 8(6): 47-52. |
[15] | 迪里木拉提.玉苏甫,阿尔祖古丽BbBb图尔荪,玉苏甫.买买提. 钠盐胁迫对5种白刺种子耐盐性影响对比分析[J]. 农学学报, 2018, 8(10): 19-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||