Journal of Agriculture ›› 2018, Vol. 8 ›› Issue (9): 20-26.doi: 10.11923/j.issn.2095-4050.cjas17050013
Previous Articles Next Articles
Received:
2017-05-11
Revised:
2017-06-30
Accepted:
2017-07-11
Online:
2018-09-19
Published:
2018-09-19
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas17050013
[1] 张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915~924. [2] Ju, X., Gu, B., Wu, Y., Galloway, J. N. Reducing China’s fertilizer use by increasing farm size[J]. Global Environmental Change, 2016, 41, 26-32. [3] Prado A, Corré W J, Gallejones P, et al. NUTGRANJA 2.0: a simple mass balance model to explore the effects of different management strategies on nitrogen and greenhouse gases losses and soil phosphorus changes in dairy farms[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(7): 1145-1164. [4] Lin H C, Huber J A, Gerl G, et al. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems[J]. Nutrient Cycling in Agroecosystems, 2016, 105(1): 1-23. [5] Chen D, Hu M, Guo Y, et al. Long-term (1980–2010) changes in cropland phosphorus budgets, use efficiency and legacy pools across townships in the Yongan watershed, eastern China[J]. Agriculture, Ecosystems Environment, 2017, 236: 166-176. [6] Chen M, Sun F, Shindo J. China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios[J]. Resources, Conservation and Recycling, 2016, 111: 10-27. [7]巨晓棠,谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报,2014,(04):783-795. [8]. 我国三大粮食作物肥料利用率处较低水平[J]. 四川农业科技,2013,(12):47. [9] Hosseiny Y, Maftoun M. Effects of nitrogen levels, nitrogen sources and zinc rates on the growth and mineral composition of lowland rice[J]. Journal of Agricultural Science and Technology, 2010, 10: 307-316. [10] Rose T J, Impa S M, Rose M T, et al. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding[J]. Annals of botany, 2013, 112(2): 331-345. [11]刘阿梅,向言词,田代科,等. 生物炭对植物生长发育及重金属镉污染吸收的影响[J]. 水土保持学报,2013,(05):193-198-204. [12]张伟. 论述生物炭对土壤肥料作用及未来发展[J]. 黑龙江科技信息,2015,(24):264. [13] Zheng H, Wang Z, Deng X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J]. Geoderma, 2013, 206: 32-39. [14] Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L., Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils.[J] Journal of Environmental Quality, 2010, 39(4), 1224-1235. [15] Johannes Lehmann.Bio-Energy in the Black[J] . Frontiers in Ecology the Environment, 2007 , 5 ( 7 ) : 381 ~387 [16] Zhang J, Zhang Z, Shen G, et al. Growth Performance, Nutrient Absorption of Tobacco and Soil Fertility after Straw Biochar Application[J]. International Journal of Agriculture Biology, 2016, 18(5). [17] ?imansky V, Horák J, Igaz D, et al. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure?[J]. Biologia, 2016, 71(9): 989-995. [18]房彬,李心清,赵斌,等. 生物炭对旱作农田土壤理化性质及作物产量的影响[J]. 生态环境学报,2014,(08):1292-1297. [19]何绪生,张树清,佘雕,等. 生物炭对土壤肥料的作用及未来研究日[J]. 中国农学通报, 2011, 27(15): 1625. [20] Johannes Lehmann,John Gaunt,Marco Rondon.Bio- char Sequestration in Terrestrial Ecosystems – A Review[J] . Mitigation and Adaptation Strategies for Global Change, 2006 , 11 ( 2 ) : 395 ~419 [21] Luo, H. H., Tao, X. P., Hu, Y. Y., Zhang, Y. L., Zhang, W. F. (2015). Response of cotton root growth and yield to root restriction under various water and nitrogen regimes. Journal of Plant Nutrition Soil Science, 178(3), 384-392. [22] Wouterlood M, Lambers H, Veneklaas E J. Rhizosphere carboxylate concentrations of chickpea are affected by soil bulk density[J].Plant biology (Stuttgart, Germany),2006 , 8 ( 2) : 198 ~203 [23] Han E, Kautz T, K?pke U. Precrop root system determines root diameter of subsequent crop[J]. Biology and Fertility of Soils, 2016, 52(1): 113-118. [24] Alburquerque J A, Calero J M, Barrn V, et al. Effects of biochars produced from different feedstocks on soil properties and sunflower growth[J]. Journal of plant nutrition and soil science, 2014, 177(1): 16-25. [25] Obia A, Mulder J, Martinsen V, et al. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils[J]. Soil and Tillage Research, 2016, 155: 35-44. [26] Manna M C, Singh M V. Long-term effects of intercropping and bio-litter recycling on soil biological activity and fertility status of sub-tropical soils[J]. Bioresource technology, 2001, 76(2): 143-150. [27] Wang S, Shan J, Xia Y, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: A field experiment over two consecutive rice-growing seasons[J]. Science of The Total Environment, 2017, 593: 347-356. [28]王宁,侯艳伟,彭静静,等. 生物炭吸附有机污染物的研究进展[J]. 环境化学,2012,(03):287-295. [29] Chiou C T, Lee J F, Boyd S A. The surface area of soil organic matter[J]. Environmental Science Technology, 1990, 24(8): 1164-1166. [30]陈宝梁,周丹丹,朱利中,等.生物碳质吸附剂对水中有机污染物的吸附作用及机理[J]. 中国科学B辑: 化学,2008,38(6):530-537 [31] Karanfil T, Kilduff J E. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants[J]. Environmental science technology, 1999, 33(18): 3217-3224. [32] Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science Technology, 2002, 36(17): 3725-3734. [33] Leone A, Ripa M N, Uricchio V, et al. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models[J]. Journal of Environmental Management, 2009, 90(10): 2969-2978. [34]王萌萌,周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境学报,2013,(05):768-780. [35] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. [36]李力,陆宇超,刘娅,等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报,2012,(11):2277-2283. [37] Yang F, Cao X, Gao B, et al. Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH4+-N[J]. Environmental Science and Pollution Research, 2015, 22(12): 9184-9192. [38] Nelson N O, Agudelo S C, Yuan W, et al. Nitrogen and phosphorus availability in biochar-amended soils[J]. Soil Science, 2011, 176(5): 218-226. [39] Chintala R, Mollinedo J, Schumacher T E, et al. Nitrate sorption and desorption in biochars from fast pyrolysis[J]. Microporous and Mesoporous Materials, 2013, 179: 250-257. [40]李力,陆宇超,刘娅,等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报,2012,(11):2277-2283. [41] DeLuca T H, Gundale M J, MacKenzie M D, et al. Biochar effects on soil nutrient transformations[J]. Biochar for environmental management: science, technology and implementation, 2015, 2: 421-454. [42]闫钟清,齐玉春,董云社,等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报,2014,(06):279-292. [43] Scholberg J M, Zotarelli L, Tubbs R S, et al. Nitrogen uptake efficiency and growth of bell pepper in relation to time of exposure to fertilizer solution[J]. Communications in soil science and plant analysis, 2009, 40(13-14): 2111-2131. [44] Bruun E W, Ambus P, Egsgaard H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46: 73-79. [45] Liu Z, Balasubramanian R. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite[J]. Bioresource technology, 2014, 151: 85-90. [46]张星,张晴雯,刘杏认,等. 施用生物炭对农田土壤氮素转化关键过程的影响[J]. 中国农业气象,2015,(06):709-716. [47]杨帆,李飞跃,赵玲,等. 生物炭对土壤氨氮转化的影响研究[J]. 农业环境科学学报,2013,05:1016-1020. [48] Prommer J, Wanek W, Hofhansl F, et al. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial[J]. PLoS One, 2014, 9(1): e86388. [49] Ball P N, MacKenzie M D, DeLuca T H, et al. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils[J]. Journal of Environmental Quality, 2010, 39(4): 1243-1253. [50] Song Y, Zhang X, Ma B, et al. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil[J]. Biology and fertility of soils, 2014, 50(2): 321-332. [51] Kang S W, Seo D C, Cheong Y H, et al. Effect of barley straw biochar application on greenhouse gas emissions from upland soil for Chinese cabbage cultivation in short-term laboratory experiments[J]. Journal of Mountain Science, 2016, 13(4): 693. [52]刘玉学,唐旭,杨生茂,等. 生物炭对土壤磷素转化的影响及其机理研究进展[J]. 植物营养与肥料学报,2016,(06):1690-1695. [53] Xu G, Wei L L, Sun J N, et al. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?[J]. Ecological engineering, 2013, 52: 119-124. [54] Olmo M, Lozano A M, Barrón V, et al. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield[J]. Science of the Total Environment, 2016, 562: 690-700. [55] Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Change Biol Bioenergy, 2013, 5: 202–214. [56] Gundale M J, DeLuca T H. Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem[J]. Forest Ecology and management, 2006, 231: 86-93. [57] Yuan J H, Xu R K, Qian W, et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of soils and sediments, 2011, 11(5): 741-750. [58] Christel W, Bruun S, Magid J, et al. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment[J]. Bioresource technology, 2014, 169: 543-551. [59] Zhai L, CaiJi Z, Liu J, et al. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities[J]. Biology and fertility of soils, 2015, 51(1): 113-122. [60] Gundale M J, DeLuca T H. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem[J]. Biology and Fertility of Soils, 2007, 43(3): 303-311. [61] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and soil, 2010, 337(1-2): 1-18. [62] Wisawapipat W, Charoensri K, Runglerttrakoolchai J. Solid-Phase Speciation and Solubility of Phosphorus in an Acid Sulfate Paddy Soil during Soil Reduction and Reoxidation as Affected by Oil Palm Ash and Biochar[J]. Journal of Agricultural and Food Chemistry, 2017. [63] Knowles O A, Robinson B H, Contangelo A, et al. Biochar for the mitigation of nitrate leaching from soil amended with biosolids[J]. Science of the Total Environment, 2011, 409(17): 3206-3210. [64]刘祥宏. 生物炭在黄土高原典型土壤中的改良作用[D].中国科学院研究生院教育部水土保持与生态环境研究中心,2013. [65] Wang W, Zeng C, Sardans J, et al. Amendment with industrial and agricultural wastes reduces surface-water nutrient loss and storage of dissolved greenhouse gases in a subtropical paddy field[J]. Agriculture, Ecosystems Environment, 2016, 231: 296-303. [66] Bradley A, Larson R A, Runge T. Effect of wood biochar in manure-applied sand columns on leachate quality[J]. Journal of environmental quality, 2015, 44(6): 1720-1728. [67]孙向平,李国学,孟凡乔,等. 新疆伊犁垦区有机水稻生产养分平衡及氮素污染风险分析5678 农业工程学报,2011,27(增刊2):158-162 [68]商放泽,杨培岭,李云开,等.不同施氮水平对深层包气带土壤氮素淋溶累积的影响[J].农业工程学报,2012, 28(7) :103-110. [69]冯轲,田晓燕,王莉霞,等. 化肥配施生物炭对稻田田面水氮磷流失风险影响[J]. 农业环境科学学报,2016,(02):329-335. [70]李立娜. 吉林玉米带典型区域地下水硝态氮污染状况调查分析[D].吉林农业大学,2006. [71]周志红,李心清,邢英,等. 生物炭对土壤氮素淋失的抑制作用[J]. 地球与环境,2011,(02):278-284. [72] Sun H, Lu H, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH 3 volatilization in a coastal saline soil[J]. Science of The Total Environment, 2017, 575: 820-825. [73]邢英.生物炭对土壤氮(N)、磷(P)、碳(C)淋滤作用的影响[D].中国科学院研究生院,2012. [74]李卓瑞,韦高玲. 不同生物炭添加量对土壤中氮磷淋溶损失的影响[J]. 生态环境学报,2016,(02):333-338. [75] Laird D, Fleming P, Wang B, et al. Biochar impact on nutrient leaching from a midwestern agricultural soil [J] . Geoderma.2010, 158(3-4):436 -422. [76] Pratiwi E P A, Hillary A K, Fukuda T, et al. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil[J]. Geoderma, 2016, 277: 61-68. [77] Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8): 629-634. [78]王淳,周卫,李祖章,等. 不同施氮量下双季稻连作体系土壤氨挥发损失研究[J]. 植物营养与肥料学报,2012,(02):349-358. [79] Mukherjee A, Zimmerman A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures[J]. Geoderma, 2013, 193: 122-130. [80] Sarkar B, Naidu R. Nutrient and Water Use Efficiency in Soil: The Influence of Geological Mineral Amendments[M].Nutrient Use Efficiency: from Basics to Advances. Springer India, 2015: 29-44. [81] Mandal S, Thangarajan R, Bolan N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||