Journal of Agriculture ›› 2020, Vol. 10 ›› Issue (2): 75-80.doi: 10.11923/j.issn.2095-4050.cjas20190500057
Special Issue: 水稻
Previous Articles Next Articles
Shen Xueliang1,2, Tian Guanglei1, Zhou Yuanchang1(), Wang Ying2()
Received:
2019-05-29
Revised:
2019-09-19
Online:
2020-02-24
Published:
2020-02-24
Contact:
Yuanchang Zhou,Ying Wang
E-mail:zwy_2002@163.com;492724648@qq.com
CLC Number:
Shen Xueliang, Tian Guanglei, Zhou Yuanchang, Wang Ying. Rice Biological Characteristics: Effects on Methane Emission from Paddy Fields[J]. Journal of Agriculture, 2020, 10(2): 75-80.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas20190500057
[1] | Edenhofer O, Seyboth K . Intergovernmental Panel on Climate Change (IPCC)[J]. Encyclopedia of Energy Natural Resource & Environmental Economics, 2013,26(2):48-56. |
[2] | 何群华, 乐向晖 . 全球变暖对农作物影响及对策的研究进展[J]. 陕西农业科学, 2008,54(5):121-124. |
[3] | 郭庆春, 何振芳, 李力 . 全球气候变化对农业的影响[J]. 湖南农业科学, 2011(19):61-64. |
[4] |
Kirschke S, Bousquet P, Ciais P , et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013,6(10):813-823.
doi: 10.1038/NGEO1955 URL pmid: 30733299 |
[5] | Neue H U, Latin R S, Wassmann R , et al. Effect of rice cultivates on methane emission[J]. IRRN, 1994,19(3):32-33. |
[6] |
Peng S, Khush G S, Virk P , et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008,108(1):32-38.
doi: 10.1016/j.fcr.2008.04.001 URL |
[7] | Xiong W, Marijn V D V, Holman I P , et al. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China ?[J]. Agriculture, Ecosystems & Environment, 2014,196:125-136. |
[8] |
Yoshinaga S, Takai T, Arai-Sanoh Y , et al. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan[J]. Field Crops Research, 2013,150:74-82.
doi: 10.1016/j.fcr.2013.06.004 URL |
[9] | Bharali A, Baruah K K, Gogoi N . Potential option for mitigating methane emission from tropical paddy rice through selection of suitable rice varieties[J]. Crop and Pasture Science, 2017,68(5):421-433. |
[10] |
Qin X, Yue Li, Wang H , et al. Effect of rice cultivars on yield-scaled methane emissions in a double rice field in South China[J]. Journal of Integrative Environmental Sciences, 2015,12(sup1):47-66.
doi: 10.1080/1943815X.2015.1118388 URL |
[11] | 邵可声, 李震 . 水稻品种以及施肥措施对稻田甲烷排放的影响[J]. 北京大学学报:自然科学版, 1996,32(4):505-513. |
[12] | 王建辉 . 水稻根系的作用及促根生长技术措施[J]. 吉林农业, 2013(11):39-39. |
[13] | 林敏, 尤崇杓 . 水稻根分泌物及其与粪产碱菌的相互作用[J]. 中国农业科学, 1989,22(6):6-12. |
[14] |
Aulakh M S, Wassmann R, Bueno C , et al. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil[J]. Plant and Soil, 2001,230(1):77-86.
doi: 10.1023/A:1004817212321 URL |
[15] |
Aulakh M . Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars[J]. Plant Biology, 2001,3(2):139-148.
doi: 10.1055/s-2001-12905 URL |
[16] | 王大力, 林伟宏 . CO2浓度升高对水稻根系分泌物的影响——总有机碳、甲酸和乙酸含量变化[J]. 生态学报, 1999,19(4):570-572. |
[17] |
Lu Y, Wassmann R, Neue H U , et al. Methanogenic responses to exogenous substrates in anaerobic rice soils[J]. Soil Biology & Biochemistry, 2000,32(11):1683-1690.
doi: 10.1016/S0038-0717(00)00085-7 URL |
[18] |
Kimura, Makoto, Murase , et al. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4)[J]. Soil Biology & Biochemistry, 2004,36(9):1399-1416.
doi: 10.1016/j.soilbio.2004.03.006 URL |
[19] | 孙会峰, 周胜, 陈桂发 , 等. 水稻品种对稻田CH4和N2O排放的影响[J]. 农业环境科学学报, 2015,34(8):1595-1602. |
[20] | 王天龙, 杨宁, 任万辉 . 清远地区晚稻田甲烷排放的实验[J]. 广东气象, 2007,29(3):42-44. |
[21] | 孟冬梅 . 水稻根系通气组织的泌氧能力研究[D]. 北京:北京林业大学, 2008. |
[22] | King G M . Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics[M]. New York:Advances in Microbial Ecology, 1992: 431-468. |
[23] | 曹云英, 朱庆森, 郎有忠 , 等. 水稻品种及栽培措施对稻田甲烷排放的影响[J]. 江苏农业研究, 2000,21(3):22-27. |
[24] | 刘依依, 傅志强, 龙文飞 , 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究[J]. 农业现代化研究, 2015,36(6):1105-1111. |
[25] | 傅志强, 朱华武, 陈灿 , 等. 水稻根系生物特性与稻田温室气体排放相关性研究[J]. 农业环境科学学报, 2011,30(12):2416-2421. |
[26] | Wang B, Adachi K . Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission[J]. Nutr.cycl.agroecosys, 2000,58(1/3):349-356. |
[27] | 阎丽娜, 李霞 . 水稻对稻田甲烷排放的影响[J]. 中国农学通报, 2008,24(10):471-475. |
[28] | Ke M A, Qiu Q, Yahai L U . Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010,16(11):3085-3095. |
[29] | 钟娟, 傅志强, 刘莉 , 等. 水稻植株甲烷传输能力与根系特性的相关性分析[J]. 作物杂志, 2017(4):105-112. |
[30] | Tanaka N, Yutani K, Aye T , et al. Effect of broken dead culms of phragmites australison radial oxygen loss in relation to radiation and temperature[J]. Hydrobiologia, 2007,583(1):165-172. |
[31] |
Baruah K K, Gogoi B, Gogoi P . Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy[J]. Physiology & Molecular Biology of Plants An International Journal of Functional Plant Biology, 2010,16(1):79-91.
doi: 10.1007/s12298-010-0010-1 URL pmid: 23572957 |
[32] | 任丽新, 王庚辰, 张仁健 , 等. 成都平原稻田甲烷排放的实验研究[J]. 大气科学, 2002,26(6):731-733. |
[33] | 徐雨昌, 王增远, 李震 , 等. 不同水稻品种对稻田甲烷排放量的影响[J]. 植物营养与肥料学报, 1999,5(1):93-96. |
[34] |
Watanabe A . Influence of rice cultivar on methane emission from paddy fields[J]. Plant & Soil, 1995,176(1):51-56.
doi: 10.1111/j.1399-3054.2008.01137.x URL pmid: 18507814 |
[35] | 葛会敏, 陈璐, 于一帆 , 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015,31(3):160-166. |
[36] | Aulakh M S, Bodenbender J, Wassmann R , et al. Methane Transport Capacity of Rice Plants. II. Variations Among Different Rice Cultivars and Relationship with Morphological Characteristics[J]. Nutrient Cycling in Agroecosystems, 2000,58(1/3):367-375. |
[37] |
Gogoi N, Baruah K K, Gupta P K . Selection of rice genotypes for lower methane emission[J]. Agronomy for Sustainable Development, 2008,28(2):181-186.
doi: 10.1051/agro:2008005 URL |
[38] |
Mariko S, Harazono Y, Owa N , et al. Methane in flooded soil water and the emission through rice plants to the atmosphere[J]. Environmental and Experimental Botany, 1991,31(3):343-350.
doi: 10.1016/0098-8472(91)90059-W URL |
[39] |
Das K, Baruah K K . Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2010,134(2):303-312.
doi: 10.1111/j.1399-3054.2008.01137.x URL pmid: 18507814 |
[40] | 郑忠和, 邱金龙, 潘永红 . 水稻分蘖与产量[J]. 新农民月刊, 2011(2):64-64. |
[41] | Nayak, D. R, Adhya , et al. Methane emission from a flooded field of Eastern india as influenced by planting date and age of rice (Oryza sativa L.) seedlings[J]. Agriculture Ecosystems & Environment, 2016,115(1):79-87. |
[42] |
Wang B, Neue H U, Samonte H P . Role of rice in mediating methane emission[J]. Plant and Soil, 1997,189(1):107-115.
doi: 10.1023/A:1004219024281 URL |
[43] | Neue H U, Sass R L . Trace Gas Emissions from Rice Fields[J]. Biogeochemistry of Global Change, 1994,48:119-147. |
[44] | 曹云英, 许锦彪, 朱庆森 . 水稻叶片对甲烷传输速率的影响[J]. 山东农业科学, 2004(3):34-35. |
[45] |
Denier Van Der Gon H A C, Breemen N . Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants[J]. Biogeochemistry, 1993,21(3):177-190.
doi: 10.1007/BF00001117 URL |
[46] |
Nouchi I, Mariko S, Aoki K . Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants[J]. Plant Physiology, 1990,94(1):59-66.
doi: 10.1104/pp.94.1.59 URL pmid: 16667719 |
[47] | Zhang Y, Jiang Y, Li Z J , et al. Aboveground morphologicaltraits do not predict rice variety effects on CH4 emissions[J]. Agriculture, Ecosystems & Environment, 2015,208:86-93. |
[48] | 黑瑞, 田军仓, 马波 . 膜下滴灌旱作水稻甲烷的排放研究[J]. 灌溉排水学报, 2015,34(4):67-69. |
[49] | Öquist, M. G, Svensson, B . Vascular plants as regulators of methane emissions from a subarctic mire ecosystem[J]. Journal of Geophysical Research, 2002,107(D21):4580. |
[50] |
Tokida T, Fumoto T, Cheng W , et al. Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation[J]. Biogeosciences, 2010,7(9):2639-2653.
doi: 10.5194/bg-7-2639-2010 URL |
[51] |
Das K, Baruah K K . Association between contrasting methane emissions of two rice (Oryza sativa L.) cultivars from the irrigated agroecosystem of northeast India and their growth and photosynthetic characteristics[J]. Acta Physiologiae Plantarum, 2008,30(4):569-578.
doi: 10.1007/s11738-008-0156-4 URL |
[52] |
Yu K W, Chen G X, Xu H . Rice yield reduction by chamber enclosure: a possible effect on enhancing methane production[J]. Biology and Fertility of Soils, 2006,43(2):257-261.
doi: 10.1007/s00374-006-0096-3 URL |
[53] | Nouchi I, Mariko S . Mechanism of Methane Transport by Rice Plants[J]. Biogeochemistry of Global Change, 1993: 336-352. |
[54] |
Aulakh M S, Bodenbender J, Wassmann R , et al. Methane Transport Capacity of Rice Plants. I. Influence of Methane Concentration and Growth Stage Analyzed with an Automated Measuring System[J]. Nutrient Cycling in Agroecosystems, 2000,58(1/3):357-366.
doi: 10.1023/A:1009831712602 URL |
[55] |
Chanton J P, Whiting G J, Blair N E , et al. Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange[J]. Global Biogeochemical Cycles, 1997,11(1):15-27.
doi: 10.1029/96GB03761 URL |
[56] | Allen L H, Albrecht S L, Colón-Guasp , et al. Methane Emissions of Rice Increased by Elevated Carbon Dioxide and Temperature[J]. Journal of Environment Quality, 2003,32(6):1978. |
[57] | Xu S, Peter R. Jaffé, Mauzerall D L . A process-based model for methane emission from flooded rice paddy systems[J]. Ecological Modelling, 2007,205(3/4):475-491. |
[58] |
Das K, Baruah K K . Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2010,134(2):303-312.
doi: 10.1111/j.1399-3054.2008.01137.x URL pmid: 18507814 |
[59] |
Corton T M, Al E . Methane emission from irrigated and intensively managed rice fields in Central Luzon Philippines[J]. Nutrient Cycling in Agroecosystems, 2000,58(1/3):37-53.
doi: 10.1023/A:1009826131741 URL |
[60] |
Denier van der Gon, H. A. C, Kropff M J, Van Breemen N , et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields[J]. Proceedings of the National Academy of Sciences, 2002,99(19):12021-12024.
doi: 10.1073/pnas.192276599 URL pmid: 12189212 |
[61] |
Su J, Hu C, Yan X , et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015,523(7562):602-606.
doi: 10.1038/nature14673 URL pmid: 26200336 |
[62] | Jiang Y, Wang L L, Yan x J , et al. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China[J]. Rice Science, 2013,20(6):427-433. |
[63] | 傅志强, 黄璜, 谢伟 , 等. 高产水稻品种及种植方式对稻田甲烷排放的影响[J]. 应用生态学报, 2009,20(12):3003-3008. |
[64] | 黄农荣, 梁开明, 钟旭华 , 等. 南方低甲烷排放的高产水稻品种筛选与评价[J]. 农业环境科学学报, 2018,37(12):2854-2863. |
[1] | HE Mi, LI Xiaobo, HUANG Jing, HUANG Guangfu. The Relationship Between Leaf Area Index and Yield of Rice: Research Progress [J]. Journal of Agriculture, 2022, 12(8): 1-5. |
[2] | MENG Yanyu, JING Yanjie, ZHOU Yinfu. Nitrogen Application Rate: Effects on Photosynthetic Characteristics and Grain Filling Characteristics of Maize [J]. Journal of Agriculture, 2022, 12(8): 10-15. |
[3] | TENG Shihui. Functional Rice in Southern Shandong Province: Introduction and Variety Screening [J]. Journal of Agriculture, 2022, 12(7): 1-4. |
[4] | LI Jiqin, YUAN Qinghua, LIU Yang, WEN Zhiqiang, QIU Chunren, ZHANG Haixia, MA Zhuwen. Selection and Suitability Evaluation of Eight Introduced Flue-cured Tobacco Varieties in Shaoguan Ecological Tobacco Areas [J]. Journal of Agriculture, 2022, 12(7): 38-44. |
[5] | YAN Yu, WANG Weijian, YAO Yutian, CHEN Chen, QIU Jun, ZHANG Xiaowei, CHEN Xijun. Effect of Several Biological Agents on Controlling Rice Blast and Improving Yield and Quality of Organic Rice [J]. Journal of Agriculture, 2022, 12(7): 5-11. |
[6] | LIU Xingzhou, LI Meng, ZHANG Jian, CHEN Ruiji, FU Hua, MA Guimei, ZHOU Yanhu, ZHUAG Xiaolin. The Dehydration and Mechanical-harvesting of Maize Grain: Research Progress [J]. Journal of Agriculture, 2022, 12(7): 64-68. |
[7] | WANG Xiaodan, WANG Yaliang, ZHANG Yuping, XIANG Jing, ZHANG Yikai, CHEN Huizhe. Nitrogen Application: Effect on Yield and Quality of Machine Transplanted Large Panicle Single Cropping Rice [J]. Journal of Agriculture, 2022, 12(6): 1-4. |
[8] | CHEN Jun, ZHANG Haijun, HAN Mingming, JIANG Fangshan. Row Spacing Configuration with Water-soluble Amino Acid Fertilizer and Betaine Affect the Physiological Effect and Harvest Index of Mechanical Harvesting Summer Maize Cultivars [J]. Journal of Agriculture, 2022, 12(6): 18-23. |
[9] | ZHANG Xinfeng, ZHANG Guo, YU Julong, FANG Jichao, LUO Guanghua, ZHU Feng, SHU Zhaolin. Pymetrozine Compound Insecticides: Control Effect on Rice Planthopper and Safety for Spiders [J]. Journal of Agriculture, 2022, 12(6): 33-38. |
[10] | LI Wenfeng, WANG Xiaoyan, CANG Xiaoyan, ZHANG Rongyue, SHAN Hongli, LU Wenjie, WANG Changmi, YIN Jiong, HUANG Yingkun. Investigation and Detection of the Insect Vector of Sugarcane White Leaf Phytoplasma in Gengma [J]. Journal of Agriculture, 2022, 12(5): 6-9. |
[11] | YU Yanmin, YAN Ping, WU Hongtao, LIU Haiying, XU Zhenhua, ZHANG Shuli, WU Licheng, YANG Zhongliang. Quality Traits’ Analysis of Newly Approved Rice Varieties of Heilongjiang Province in 2019 [J]. Journal of Agriculture, 2022, 12(4): 1-5. |
[12] | XI Xiaoqian, LI Hong, WANG Ruijun, ZHANG Xuli, YANG Zhibin. Disease Resistance of Maize Varieties: Evaluation and Its Grey Correlation with Agronomic Characters [J]. Journal of Agriculture, 2022, 12(4): 13-17. |
[13] | SUN Yingying, WANG Chao, WANG Ruixia, MU Qiuhuan, MI Yong, LV Guangde, QI Xiaolei, SUN Xianyin, CHEN Yongjun, QIAN Zhaoguo, WU Ke. Wheat Lodging: Cause and Mechanism and Its Effect on Wheat Yield and Quality [J]. Journal of Agriculture, 2022, 12(3): 1-5. |
[14] | LIU Xiaoyue, ZHANG Yan, GE Yi, LIU Nengbin, LIU Weiguo. The Passivation Stability of Cadmium by Applying Common Mineral Materials [J]. Journal of Agriculture, 2022, 12(3): 40-43. |
[15] | LIU Rui, NIE Ying, SUN Yongqi, SHENG Jiping, HUANG Jiazhang, WANG Pei, SUN Junmao. Factors Influencing the Pricing of High-quality Agricultural Products and the Pricing Strategy [J]. Journal of Agriculture, 2022, 12(3): 86-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||