[1] |
Wenzel W W, Uniter Brunner R, Soeeer P, et al. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments[J]. Plant Soil, 2003,249(1):83-96.
doi: 10.1023/A:1022516929239
URL
|
[2] |
Rajkumar M, Prasad M N V, Freitas H, et al. Biotechnological applications of serpentine bacteria for phytoremediation of heavy metals[J]. Critical Reviews in Biotechnology, 2009,29(2):120-130.
doi: 10.1080/07388550902913772
pmid: 19514893
|
[3] |
Cai Q, Long M L, Zhu M, et al. Food chain transfer of cadmium an lead to cattle in a lead-zinc smelter in Guizhou[J]. China. Environmental Pollution, 2009,157(11):3078-3082.
|
[4] |
李硕. 水葱对镉污染土壤修复潜力的研究[D]. 长沙:湖南大学, 2006: 44-58.
|
[5] |
李榜江. 贵州山区煤矿废弃地重金属污染评价及优势植物修复效应研究[D]. 重庆:西南大学, 2014: 8-13.
|
[6] |
张芳, 王晓红. 贵州重金属镉污染土壤的修复植物选择[J]. 农技服务, 2018,35(1) : 85-87.
|
[7] |
严群, 周娜娜. 植物修复重金属污染土壤的技术进展[J]. 有色金属科学与工程, 2012,3(5):61.
|
[8] |
万云兵, 仇荣亮, 陈志良, 等. 重金属污染土壤中提高植物提取修复功效的探讨[J]. 环境污染治理技术与设备, 2002,3(4):56-59.
|
[9] |
Wang Y H, Chen X J, Qi S H. Phytoremediation techniques for lead contaminated soil[J]. Chinese Journal of Soil Science, 2007,38(4):790-794.
|
[10] |
赵斌, 何绍江. 微生物学试验[M]. 北京: 科学出版社, 2002.
|
[11] |
王红旗, 李华, 陆泗进. 羽叶鬼针草对Pb的吸收特性及修复潜力[J]. 环境科学, 2005,26(6):143-147.
|
[12] |
Knight B, Zhao F J, Mc Granth S P, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soils solution[J]. Plant and Soil, 1997,197:71-78.
doi: 10.1023/A:1004255323909
URL
|
[13] |
Shen Z G, Zhao F J, Mc Granth S P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum[J]. Plant Cell and Environment, 1997,20:898-906.
doi: 10.1046/j.1365-3040.1997.d01-134.x
URL
|
[14] |
Paul R, Lucas B, Jan J. Cathrina draais ma potentials and draw backs of chelate-enhanced phytoremediation of soils[J]. Environmental pollution, 2002,116:109-121.
doi: 10.1016/S0269-7491(01)00150-6
URL
|
[15] |
Belimov A A, Hontzens N, Safronova V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)[J]. Soil Biology and Biochemistry, 2005,37:241-250.
doi: 10.1016/j.soilbio.2004.07.033
URL
|
[16] |
原志敏. 贵州毕节市农田土壤重金属污染钝化修复研究研究[D]. 北京:北京科技大学, 2018: 4-9.
|
[17] |
王碧玲. 含磷物质修复铅锌矿污染土壤的机理和技术[D]. 杭州:浙江大学, 2008: 7-22.
|
[18] |
刘伟. 土壤磷素性质及磷对铅的稳定作用[D]. 郑州:河南工业大学, 2012: 7-49.
|
[19] |
刘忠珍. 石灰性土壤中磷与重金属(锌、镉)交互作用研究[D]. 郑州:河南农业大学, 2003: 13-45.
|
[20] |
牛之欣, 孙丽娜. 重金属镉污染土壤的植物-微生物联合修复研究进展[J]. 生态学杂志, 2009,28(11):2366-2370.
|
[21] |
牛荣成, 魏树和, 周启星, 等. 植物-微生物联合修复重金属污染土壤研究进展[J]. 世界科技研究与发展, 2010,32(5):663-665.
|
[22] |
李海燕, 熊帜, 李欣亚, 等. 植物-微生物联合修复重金属污染土壤研究进展[J]. 昆明理工大学学报:自然科学版, 2017,42(3):81-83.
|
[23] |
丁巧蓓, 晁元卿, 王诗忠, 等. 根际微生物群落多样性在重金属土壤修复中的研究[J]. 华南师范大学学报:自然科学版, 2016,48(2):1-5.
|
[24] |
韩丽珍, 邓兆辉, 朱春艳, 等. 茶树根际促生菌的筛选与促生特性的研究[J]. 山地农业生物学报, 2016,35(1):51-52.
|
[25] |
Huang J W, Chen J, Berti W R, et al. Phytoremediation of lead -contaminated soil: role of synthetic chelates in lead phytoextraction[J]. Environmental Pollution, 2004,131:147-154.
doi: 10.1016/j.envpol.2004.01.017
URL
|
[26] |
江春玉. 重金属铅镉抗性菌株的筛选、生物学特性及其强化植物修复铅镉污染土壤的研究[D]. 南京:南京农业大学, 2005.
|
[27] |
中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985.
|
[28] |
王亮. 内生细菌强化植物修复钒矿污染土壤效应及机理研究[D]. 北京:北京科技大学, 2019: 29-30.
|
[29] |
刘劲松, 张健君. 内生菌参与植物/微生物联合修复重金属污染土壤的研究进展[J]. 中国植保导刊, 2014,2:27-28.
|
[30] |
张璐. 微生物强化重金属污染土壤植物修复的研究[D]. 长沙:湖南大学, 2007: 31-34.
|
[31] |
萨姆布鲁克E F, 弗里齐T M. 分子克隆实验指南[M]. 北京: 科学出版社, 1998.
|
[32] |
Vigdis T, Lise O. Microbial diversity and function in soil: From genes to ecosystems[J]. Ecology and Industrial Microbiology, 2002(5):240-245.
|
[33] |
任广明, 曲娟娟. 铅抗性细菌的分离及吸附性能研究[J]. 东北农业大学学报, 2010,41(2):56-57.
|
[34] |
何琳燕, 李娅, 刘涛, 等. 龙葵根际和内生Cd抗性细菌的筛选及其生物学特性[J]. 生态与农村环境学报, 2011,27(6):84-85.
|
[35] |
王连生. 环境化学进展[M]. 北京: 化学工业出版社, 1995: 421-422.
|
[36] |
钱晓莉, 徐晓航. 贵州万山汞矿废弃地自然定居植物对汞与甲基汞的吸收与累积[J]. 生态学杂志, 2019,38(2):563-564.
|
[37] |
Wan Y, Luo S, Chen J, et al. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J]. Chemosphere, 2012,89(6):743-750.
doi: 10.1016/j.chemosphere.2012.07.005
URL
|
[38] |
邓平香, 张馨, 龙新宪. 产酸内生菌焚光假单胞菌R1对东南景天生长和吸收,积累土壤中重金属锌镉的影响[J]. 环境工程学报, 2016,10(9):5245-5254.
|
[39] |
Montanez A, Blanco A R, Barlocco C, et al. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro[J]. Applied Soil Ecology, 2012,58:21-28.
doi: 10.1016/j.apsoil.2012.02.009
URL
|
[40] |
Cocking E C. Endophytic colonization of plant roots by nitrogen-fixing bacteria[J]. Plant and Soil, 2003,252(1):169-175.
doi: 10.1023/A:1024106605806
URL
|
[41] |
Nautiyal C S, Bhadauria S, Kumar P, et al. Stress induced phosphate solubilization in bacteria isolated from alkaline soils[J]. FEMS Microbiology Letters, 2000,182(2):291-296.
doi: 10.1111/fml.2000.182.issue-2
URL
|
[42] |
Ma Y, Prasad M N V, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011,29(2):248-258.
doi: 10.1016/j.biotechadv.2010.12.001
pmid: 21147211
|
[43] |
Ma Y, Rajkumar M, Luo Y, et al. Inoculation of endophytic bacteria on host and non-host plants-Effects on plant growth and Ni uptake[J]. Journal of Hazardous Materials, 2011,195:230-237.
doi: 10.1016/j.jhazmat.2011.08.034
URL
|
[44] |
Zhang Y, He L, Chen Z, et al. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape[J]. Journal of Hazardous Materials, 2011,186(2-3):1720-1725.
doi: 10.1016/j.jhazmat.2010.12.069
URL
|
[45] |
Alvin A, Miller K I, Neilan B A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds[J]. Microbiological Research, 2014,169(7):483-495.
doi: 10.1016/j.micres.2013.12.009
URL
|
[46] |
王旭梅, 盛楠, 王红旗. 铅抗性细菌的筛选及其对铅活化的研究[J]. 东北农业大学学报, 2010,41(6):64-67.
|
[47] |
叶和松. 生物表面活性剂产生菌株的筛选及提高植物吸收土壤铅镉效应的研究[D]. 南京:南京农业大学. 2006: 46-52.
|
[48] |
Sheng X F, Xia J J. Improvement of Rape (Brassica napus) Plant Growth and Cadmium Uptake by Cadmium-Resistant Bacteria[J]. Chemosphere, 2006,64(6):1036-1042.
doi: 10.1016/j.chemosphere.2006.01.051
URL
|
[49] |
Dell'amico E, Cavalca L, Andreoni V. Improvement of Brassica napus Growth Under Cadmium Stress by Cadmium-Resist-ant Rhizobacteria[J]. Soil Biology and Biochemistry, 2008,40(1):74-84.
doi: 10.1016/j.soilbio.2007.06.024
URL
|
[50] |
施积炎, 陈英旭, 林琦. 根分泌物与微生物对污染土壤重金属活性的影响[J]. 中国环境科学, 2004,24(3):316.
|
[51] |
Kashefi K, Lovley Y D R. Reduction of Fe (Ⅲ), Mn (Ⅳ), and toxic metals at 100℃ by Pyrobaculum islandi-cum[J]. Applied and Environmental Microbiology, 2000,66(3):1050-1051.
doi: 10.1128/AEM.66.3.1050-1056.2000
URL
|