[1] |
KURITA K. Chitin and chitosan: functional biopolymers from marine crustaceans[J]. Marine biotechnology, 2006, 8(3):203.
pmid: 16532368
|
[2] |
HAMEL L P, BEAUDOIN N. Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions[J]. Planta, 2010, 232(4):787-806.
|
[3] |
CHOI C, NAM J P, NAH J W. Application of chitosan and chitosan derivatives as biomaterials[J]. Journal of industrial and engineering chemistry, 2016, 33:1-10.
|
[4] |
CASTAÑEDA L M F, GENRO C, ROGGIA I, et al. Innovative rice seed coating (Oryza sativa) with polymer nanofibres and microparticles using the electrospinning method[J]. Journal of research updates in polymer science, 2014, 3(1):33-39.
|
[5] |
ZIANI K, URSÚA B, MATÉ J I. Application of bioactive coatings based on chitosan for artichoke seed protection[J]. Crop protection, 2010, 29(8):853-859.
|
[6] |
ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate polymers, 2003, 54(4):527-530.
|
[7] |
KALEMBA D, KUNICKA A. Antibacterial and antifungal properties of essential oils[J]. Current medicinal chemistry, 2003, 10(10):813-829.
doi: 10.2174/0929867033457719
pmid: 12678685
|
[8] |
LAMBERT R J W, SKANDAMIS P N, COOTE P J, et al. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol[J]. Journal of applied microbiology, 2001, 91(3):453-462.
doi: 10.1046/j.1365-2672.2001.01428.x
pmid: 11556910
|
[9] |
NANDEESHKUMAR P, SUDISHA J, RAMACHANDRA K K, et al. Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii[J]. Physiological and molecular plant pathology, 2008, 72(4-6):188-194.
|
[10] |
BENHAMOU N, LAFONTAINE P J, NICOLE M. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan[J]. Phytopathology, 1994, 84(12):1432-1444.
|
[11] |
LIZÁRRAGA-PAULÍN E G, MIRANDA-CASTRO S P, MORENO-MARTÍNEZ E, et al. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: Their influence on some phenological and biochemical behaviors[J]. Journal of Zhejiang University science B, 2013, 14(2):87-96.
|
[12] |
GUAN Y, HU J, WANG X, et al. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress[J]. Journal of Zhejiang University science B, 2009, 10(6):427-433.
|
[13] |
SONG L R. Effects of chitosan coating on seed germination and salt-tolerance of seedlings in Hybrid Rice (Oryza sativa L.)[J]. Acta agronomica sinica, 2002, 28:803-808.
|
[14] |
BHASKARA REDDY M V, ARUL J, ANGERS P, et al. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality[J]. Journal of agricultural and food chemistry, 1999, 47(3):1208-1216.
pmid: 10552439
|
[15] |
PICHYANGKURA R, CHADCHAWAN S. Biostimulant activity of chitosan in horticulture[J]. Scientia horticulturae, 2015, 196:49-65.
|
[16] |
ZENG D, LUO X, TU R. Application of bioactive coatings based on chitosan for soybean seed protection[J]. International journal of carbohydrate chemistry, 2012:1-5.
|
[17] |
BELL A A, HUBBARD J C, LIU L, et al. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery[J]. Plant disease, 1998, 82(3):322-328.
doi: 10.1094/PDIS.1998.82.3.322
pmid: 30856866
|
[18] |
ABD-EL-KAREEM F, HAGGAG W M. Chitosan and citral alone or in combination for controlling early blight disease of potato plants under field conditions[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, 5:941-949.
|
[19] |
EL GHAOUTH A, ARUL J, ASSELIN A, et al. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer[J]. Mycological research, 1992, 96(9):769-779.
|
[20] |
KATIYAR D, HEMANTARANJAN A, SINGH B, et al. A future perspective in crop protection: Chitosan and its oligosaccharides[J]. Advances in plants & agriculture research, 2014, 1(1):1-8.
|
[21] |
CORSI B, RICCIONI L, FORNI C. In vitro cultures of Actinidia deliciosa (A. Chev) CF Liang & AR Ferguson: A tool to study the SAR induction of chitosan treatment[J]. Organic agriculture, 2015, 5(3):189-198.
|
[22] |
MISHRA S, JAGADEESH K S, KRISHNARAJ P U, et al. Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions[J]. Australian journal of crop science, 2014, 8(3):347.
|
[23] |
GREEN S J, INBAR E, MICHEL F C, et al. Succession of bacterial communities during early plant development: Transition from seed to root and effect of compost amendment[J]. Applied and environmental microbiology, 2006, 72(6):3975-3983.
pmid: 16751505
|
[24] |
MANUCHAROVA N A, YAROSLAVTSEV A M, SENCHENKO D V, et al. Microbial transformation of chitin in soil under anaerobic conditions[J]. Biology bulletin, 2006, 33(2):191-194.
|
[25] |
HJORT K, BERGSTRÖM M, ADESINA M F, et al. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil[J]. FEMS microbiology ecology, 2009, 71(2):197-207.
|
[26] |
MURPHY J G, RAFFERTY S M, CASSELLS A C. Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by addition of shellfish waste to the growth substrate: interaction between mycorrhization, substrate amendment and susceptibility to red core (Phytophthora fragariae)[J]. Applied soil ecology, 2000, 15(2):153-158.
|
[27] |
WELLER D M, RAAIJMAKERS J M, GARDENER B B M S, et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual review of phytopathology, 2002, 40(1):309-348.
|
[28] |
ANGELIM A L, COSTA S P, FARIAS B C S, et al. An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads[J]. Journal of environmental management, 2013, 127:10-17.
doi: 10.1016/j.jenvman.2013.04.014
pmid: 23659866
|
[29] |
VASCONCELOS M W. Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives[J]. Frontiers in plant science, 2014, 5:616.
doi: 10.3389/fpls.2014.00616
pmid: 25429294
|
[30] |
KOWALSKI B, TERRY F J, HERRERA L, et al. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers[J]. Potato research, 2006, 49(3):167-176.
|
[31] |
KAMARI A, PULFORD I D, HARGREAVES J S J. Binding of heavy metal contaminants onto chitosans-an evaluation for remediation of metal contaminated soil and water[J]. Journal of environmental management, 2011, 92(10):2675-2682.
|
[32] |
SUN B, ZHANG L, YANG L, et al. Agricultural non-point source pollution in China: Causes and mitigation measures[J]. Ambio, 2012, 41(4):370-379.
doi: 10.1007/s13280-012-0249-6
pmid: 22311715
|
[33] |
KHOT L R, SANKARAN S, MAJA J M, et al. Applications of nanomaterials in agricultural production and crop protection: Areview[J]. Crop protection, 2012, 35:64-70.
|
[34] |
COTA-ARRIOLA O, ONOFRE CORTEZ-ROCHA M, BURGOS-HERNÁNDEZ A, et al. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture[J]. Journal of the science of food and agriculture, 2013, 93(7):1525-1536.
|
[35] |
KAH M, BEULKE S, TIEDE K, et al. Nanopesticides: state of knowledge, environmental fate, and exposure modeling[J]. Critical reviews in environmental science and technology, 2013, 43(16):1823-1867.
|
[36] |
QUIÑONES J P, GARCÍA Y C, CURIEL H, et al. Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals[J]. Carbohydrate polymers, 2010, 80(3):915-921.
|
[37] |
LAO S B, ZHANG Z X, XU H H, et al. Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone[J]. Carbohydrate polymers, 2010, 82(4):1136-1142.
|
[38] |
FENG B H, PENG L F. Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin[J]. Carbohydrate polymers, 2012, 88(2):576-582.
|
[39] |
PAULA H C B, SOMBRA F M, De FREITAS CAVALCANTE R, et al. Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil[J]. Materials science and engineering: C, 2011, 31(2):173-178.
|
[40] |
GUAN H, CHI D, YU J, et al. A novel photodegradable insecticide: Preparation, characterization and properties evaluation of nano-Imidacloprid[J]. Pesticide biochemistry and physiology, 2008, 92(2):83-91.
|
[41] |
MANIKANDAN A, SATHIYABAMA M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea[J]. International journal of biological macromolecules, 2016, 84:58-61.
doi: 10.1016/j.ijbiomac.2015.11.083
pmid: 26656594
|
[42] |
XING K, SHEN X, ZHU X, et al. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi[J]. International journal of biological macromolecules, 2016, 82:830-836.
doi: 10.1016/j.ijbiomac.2015.09.074
pmid: 26434526
|
[43] |
CORRADINI E, DE MOURA M R, MATTOSO L H C. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles[J]. Express polymer letters, 2010, 4(8):509-515.
|
[44] |
HUSSAIN M R, DEVI R R, MAJI T K. Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method[J]. Iranian polymer journal, 2012, 21(8):473-479.
|
[45] |
NARAYANAN A, DHAMODHARAN R. Super water-absorbing new material from chitosan, EDTA and urea[J]. Carbohydrate polymers, 2015, 134:337-343.
doi: 10.1016/j.carbpol.2015.08.010
pmid: 26428133
|
[46] |
PETEU S F, OANCEA F, SICUIA O A, et al. Responsive polymers for crop protection[J]. Polymers, 2010, 2(3):229-251.
|
[47] |
CHEN C, GAO Z, QIU X, et al. Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride[J]. Molecules, 2013, 18(6):7239-7252.
doi: 10.3390/molecules18067239
pmid: 23783458
|
[48] |
TAO S, PANG R, CHEN C, et al. Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan[J]. Carbohydrate Polymers, 2012, 88(4):1189-1194.
|
[49] |
PUNDIR C S, CHAUHAN N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review[J]. Analytical biochemistry, 2012, 429(1):19-31.
doi: 10.1016/j.ab.2012.06.025
pmid: 22759777
|
[50] |
SANTOS SILVA M, COCENZA D S, GRILLO R, et al. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies[J]. Journal of hazardous materials, 2011, 190(1-3):366-374.
doi: 10.1016/j.jhazmat.2011.03.057
pmid: 21493003
|
[51] |
GRILLO R, PEREIRA A E S, NISHISAKA C S, et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control[J]. Journal of hazardous materials, 2014, 278:163-171.
doi: 10.1016/j.jhazmat.2014.05.079
pmid: 24968252
|
[52] |
NAMASIVAYAM K R S, ARUNA A, GOKILA. Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes[J]. Research journal of biotechnology, 2014, 9(9):19-27.
|
[53] |
CELIS R, ADELINO M A, HERMOSín M C, et al. Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions[J]. Journal of hazardous materials, 2012, 209:67-76.
|
[54] |
WEN Y, CHEN H, YUAN Y, et al. Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae[J]. Journal of environmental monitoring, 2011, 13(4):879-885.
doi: 10.1039/c0em00593b
pmid: 21298177
|
[55] |
BAO J, HOU C, CHEN M, et al. Plant esterase-chitosan/gold nanoparticles-graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides[J]. Journal of agricultural and food chemistry, 2015, 63(47):10319-10326.
doi: 10.1021/acs.jafc.5b03971
pmid: 26554573
|