[1] |
冯嘉仪, 储双双, 王婧, 等. 华南地区几种典型人工林土壤有机碳密度及其与土壤物理性质的关系[J]. 华南农业大学学报, 2018, 39(1):83-90.
|
[2] |
杜雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 2022, 35(1):76-80.
|
[3] |
HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview[J]. Advances in agronomy, 2005,85:221-268.
|
[4] |
滕秋梅, 沈育伊, 徐广平, 等. 桂北不同林龄桉树人工林土壤碳库管理指数和碳组分的变化特征[J]. 广西植物, 2020, 40(8):1111-1122.
|
[5] |
张青青, 张桂莲, 伍海兵, 等. 城市森林土壤有机碳密度及影响因子变化研究[J]. 生态科学, 2022, 41(2):204-210.
|
[6] |
王越, 栾亚宁, 王丹, 等. 油松林土壤有机碳储量变化及其影响因素[J]. 浙江农林大学学报, 2021, 38(5):1023-1032.
|
[7] |
王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 2015, 35(16):5421-5429.
|
[8] |
ZHOU G Y, XU S, CIAIS P, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. Natural science review, 2019, 6(4):746-757.
|
[9] |
刁云飞, 张苏, 刘学, 等. 小兴安岭原始椴树红松林与次生杨桦林土壤氮组分特征[J]. 中国农学通报, 2022, 38(26):69-75.
doi: 10.11924/j.issn.1000-6850.casb2021-0868
|
[10] |
国家林业局. 森林土壤分析方法[M]. 北京: 中国标准出版社, 2000.
|
[11] |
GHANI A, DEXTER M, PERROTT K W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation[J]. Soil Bio1ogy and Bio-chemistry, 2003, 35(9):1231-1243.
|
[12] |
林鑫宇. 不同林分类型下土壤活性有机碳含量和分布特征[J]. 安徽农业大学学报, 2021, 48(3):437-443.
|
[13] |
PANG D, CUI M, LIU Y, et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China[J]. Ecological engineering, 2019,138:391-402.
|
[14] |
张宇辰, 彭道黎. 间伐对塞罕坝华北落叶松人工林土壤活性有机碳的影响[J]. 应用与环境生物学报, 2020, 26(4):961-968.
|
[15] |
陆昕, 孙龙, 胡海清. 森林土壤活性有机碳影响因素[J]. 森林工程, 2013, 29(1):9-14.
|
[16] |
闫丽娟, 李广, 吴江琪, 等. 黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响[J]. 生态学报, 2019, 39(15):5546-5554.
|
[17] |
郝江勃, 乔枫, 蔡子良. 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征[J]. 生态环境学报, 2019, 28(2):245-251.
doi: 10.16258/j.cnki.1674-5906.2019.02.004
|
[18] |
陈子豪, 焦泽彬, 刘谣, 等. 凋落物季节性输入对川西亚高山森林土壤活性有机碳的影响[J]. 应用与环境生物学报, 2021, 27(3):594-600.
|
[19] |
范志平, 王琼, 李法云. 辽东山地不同森林类型土壤有机碳季节动态及其驱动因子[J]. 生态学杂志, 2018, 37(11):45-55.
|
[20] |
张勇, 胡海波, 王增, 等. 凤阳山4种森林土壤在不同温度培养下活性有机碳的变化[J]. 浙江农林大学学报, 2018, 35(2):243-251.
|
[21] |
WANG Q K, WANG S M, YU X J. Soil carbon mineralization potential and its effect on soil active organic carbon in evergreen broadleaved forest and Chinese firplantation[J]. Chinese journal of ecology, 2007, 26(12):1918-1923.
|
[22] |
DE TROYER I, AMERY F, et al.VAN MOORLEGHEM C, Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study[J]. Soil biology biochemistry, 2011, 43(3):513-519.
|
[23] |
朱丽琴, 黄荣珍, 段洪浪, 等. 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响[J]. 生态学报, 2017, 37(1):249-257.
|
[24] |
朱浩宇, 王子芳, 陆畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2):354-360.
|
[25] |
NI X, LIAO S, TAN S, et al. The vertical distribution and control of microbial necromass carbon in forest soils[J]. Global ecology and biogeography, 2020, 29(10):1829-1839.
|
[26] |
田松岩, 刘延坤, 沃晓棠, 等. 小兴安岭3种原始红松林的土壤有机碳研究[J]. 北京林业大学学报, 2014, 36(5):33-38.
|
[27] |
洪雪姣. 大小兴安岭主要森林群落类型土壤有机碳密度及影响因子的研究[D]. 哈尔滨: 东北林业大学, 2012.
|
[28] |
郭建明, 郑博福, 胡礼乐, 等. 井冈山两种典型森林土壤有机碳密度及其影响因素的比较[J]. 生态环境学报, 2011, 20(12):1836-1840.
|
[29] |
赵华晨, 高菲, 李斯雯, 等. 长白山阔叶红松林和杨桦林土壤有机碳氮的协同积累特征[J]. 应用生态学报, 2019, 30(5):1615:1624.
|
[30] |
汲常萍, 王文杰, 韩士杰, 等. 东北次生杨桦林土壤碳氮动态特征. 生态学报, 2015, 35(17):5675-568.
|
[31] |
孙家宝, 胡海清. 大兴安岭兴安落叶松火烧迹地群落演替状况[J]. 东北林业大学学报, 2010, 38(5):30-33.
|