Journal of Agriculture ›› 2022, Vol. 12 ›› Issue (9): 31-36.doi: 10.11923/j.issn.2095-4050.cjas2021-0038
Previous Articles Next Articles
LI Tinggang1(), GONG Dongying2, ZHANG Qianqian1
Received:
2021-03-04
Revised:
2021-06-13
Online:
2022-09-20
Published:
2023-01-11
CLC Number:
LI Tinggang, GONG Dongying, ZHANG Qianqian. Genetics of Cotton Resistance to Verticillium wilt: Research Progress[J]. Journal of Agriculture, 2022, 12(9): 31-36.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas2021-0038
[1] | 喻树迅, 范术丽. 中国棉花遗传育种进展与展望[J]. 棉花学报, 2003, 15(2):120-124. |
[2] | 高灵路, 王长彪, 汪保华. 棉花抗黄萎病分子育种的现状、问题与展望[J]. 安徽农业科学, 2011, 39(19):11520-11522. |
[3] |
LI T, MA X, LI N, et al. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.)[J]. Plant biotechnology journal, 2017, 15:1520-1532.
doi: 10.1111/pbi.12734 URL |
[4] |
LI T, ZHANG D, ZHOU L, et al. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in plant science, 2018, 9:1266.
doi: 10.3389/fpls.2018.01266 URL |
[5] |
LI T, WANG B, YIN C, et al. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt[J]. Molecular plant pathology, 2019, 20(6):857-876.
doi: 10.1111/mpp.12797 URL |
[6] | PLANK JE VAN DER. Plant disease: epidemic and control[J]. Plant disease, 1963, 21:123-128. |
[7] | 梁亚军, 曲延英, 李吉琴. 棉花黄萎病的抗性遗传研究[J]. 新疆农业科学, 2010, 47(9):1759-1764. |
[8] | 王红梅, 张献龙, 李运海. 陆地棉黄萎病抗性遗传分析[J]. 棉花学报, 2004, 16(2):84-88. |
[9] | BELL A. Phytoalexin production and Verticillium wilt resistance in cotton[J]. Technical report archive and image, 1969, 13:1-8. |
[10] | 马峙英, 王省芬, 张桂寅, 等. 不同来源海岛棉品种黄萎病抗性遗传研究[J]. 作物学报, 2000, 26:315-321. |
[11] | 房卫平, 祝水金, 季道藩. 陆地棉和海岛棉的黄萎病抗性遗传研究[J]. 棉花学报, 2003, 15:3-7. |
[12] | 王省芬, 张桂寅, 李瑞奇, 等. 陆地棉黄萎病抗性的遗传研究[J]. 河北农业大学学报, 1999, 7(1):10-14. |
[13] | 蔡应繁, 谭永久, 江怀仲, 等. 陆地棉抗黄萎病遗传分析[J]. 云南农业大学学报, 2000, 15:105-108. |
[14] |
BARROW J. Critical requirements for genetic expression of Verticillium wilt tolerance in Acala Cotton[J]. Phytopathology, 1970, 60:559.
doi: 10.1094/Phyto-60-559 URL |
[15] | WILHELM S, SAGEN J, TIETZ H. Seabrook (Gossypium barbadense) X Rex (Gossypium hirsutum) crosses give Verticillium wilt resistant, upland-type, all fertile offspring[J]. Beltwide cotton production-mechanization, 1970, 1:70-72. |
[16] | 潘家驹, 张天真. 棉花黄萎病抗性遗传研究[J]. 南京农业大学学报, 1994, 12:8-18. |
[17] |
VERHALEN L, BRINKERHOFF L, FUN K, et al. A quantitative genetic study of Verticillium wilt resistance among selected lines of upland cotton[J]. Crop science, 1971, 11:41-52.
doi: 10.2135/cropsci1971.0011183X001100010014x URL |
[18] | 王升正, 齐放军, 张文蔚, 等. 抗黄萎病新品系中植棉KV-3抗性遗传特性研究[J]. 棉花学报, 2010, 22:501-504. |
[19] |
DEVEY M, ROOSE M. Genetic analysis of Verticillium wilt tolerance in cotton using pedigree data from three crosses[J]. Theoretical and applied genetics, 1987, 74:162-167.
doi: 10.1007/BF00290099 URL |
[20] | 王振山, 马峙英, 曲健木. 棉花枯黄萎病的抗性基因效应分析[J]. 河北农业大学学报, 1989, 12(2):21-25. |
[21] | 校百才, 景忆莲, 刘耀斌, 等. 陆地棉抗黄萎病性状遗传的初步研究[J]. 西北农业学报, 1998, 7(2):55-58. |
[22] | 韩祥铭, 刘英欣, 宋宪亮. 陆地棉黄萎病抗性的遗传分析[J]. 作物学报, 2001, 27:465-468. |
[23] | 王红梅, 张献龙, 贺道华, 等. 陆地棉对黄萎病抗性的分子标记研究[J]. 植物病理学报, 2005, 35:333-339. |
[24] |
KEARSEY M. The principles of QTL analysis (a minimal mathematics approach)[J]. Journal of experimental botany, 1998, 49:1619-1623.
doi: 10.1093/jxb/49.327.1619 URL |
[25] | 房卫平, 许守明. 棉花抗黄萎病的RAPD标记[J]. 河南农业科学, 2001, 30:11-13. |
[26] | ZHU S, FANG W, JI D. Molecular marker-assisted selection for Verticillium wilt resistance in upland cotton (Gossypium hirsutum)[J]. Cotton science, 2002, 1:29-30. |
[27] | 杜威世, 杜雄明, 马峙英. 棉花黄萎病抗性基因SSR标记研究[J]. 西北农林科技大学学报:自然科学版, 2004, 32:20-24. |
[28] | 高玉千, 聂以春, 张献龙. 棉花抗黄萎病基因的QTL定位[J]. 棉花学报, 2003, 15:73-78. |
[29] |
BOLEK Y, ELZIK K, PEPPER A, et al. Mapping of Verticillium wilt resistance genes in cotton[J]. Plant science, 2005, 168:1581-1590.
doi: 10.1016/j.plantsci.2005.02.008 URL |
[30] |
SHI Y, ZHANG B, LIU A, et al. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense[J]. Bmc genomics, 2016, 17:877.
doi: 10.1186/s12864-016-3128-x URL |
[31] | 昝伟, 高峰, 刘海峰, 等. 海岛棉抗黄萎病性状分子标记的研究及QTL的定位[J]. 新疆农业科学, 2008, 45:805-808. |
[32] | 吴翠翠, 简桂良, 王安乐, 等. 棉花抗黄萎病QTL初步定位[J]. 分子植物育种, 2010, 8:680-686. |
[33] | PALANGA K, JAMSHED M, MHO R, et al. Quantitative trait locus mapping for Verticillium wilt resistance in an upland cotton recombinant inbred line using SNP-based high density genetic map[J]. Frontiers in plant science, 2017, 8:382. |
[34] | 葛海燕, 汪业春, 郭旺珍, 等. 陆地棉抗黄萎病性状的遗传及分子标记研究[J]. 棉花学报, 2008, 20:19-22. |
[35] |
YANG C, GUO W, LI G, et al. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L.[J]. Plant science, 2008, 174:290-298.
doi: 10.1016/j.plantsci.2007.11.016 URL |
[36] | 李磊. 棉花抗黄萎病及重要农艺性状QTLs定位研究[D]. 乌鲁木齐: 新疆农业大学, 2007:31-35. |
[37] | 蒋锋, 赵君, 周雷, 等. 陆地棉抗黄萎病基因的分子标记定位[J]. 中国科学, 2009, 39(9):849-861. |
[38] | 王沛政. 新疆陆地棉抗病、高产等育种目标性状QTL标记及定位[D]. 南京: 南京农业大学, 2007:44-47. |
[39] |
MCHALE L, TAN X, KOEHL P, et al. Plant NBS-LRR proteins: adaptable guards[J]. Genome biology, 2006, 7:212.
doi: 10.1186/gb-2006-7-4-212 pmid: 16677430 |
[40] |
CAPLAN J, MAMILLAPALLI P, BURCH-SMITH T, et al. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector[J]. Cell, 2008, 132:449-462.
doi: 10.1016/j.cell.2007.12.031 URL |
[41] |
DANGL J, JONES J. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411:826-833.
doi: 10.1038/35081161 URL |
[42] |
YANG J, MA Q, ZHANG Y, et al. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt[J]. Gene, 2016, 575:687-694.
doi: 10.1016/j.gene.2015.09.046 URL |
[43] |
LI N, MA X, SHORT D, et al. The island cotton NBS-LRR gene GbaNA1 confers resistance to the non-race 1 Verticillium dahliae isolate Vd991[J]. Molecular plant pathology, 2018, 19(6):1466-1479.
doi: 10.1111/mpp.12630 URL |
[44] |
ZHANG Y, WANG X, Li Y, et al. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis[J]. Plant cell reports, 2013, 32:1703-1713.
doi: 10.1007/s00299-013-1481-7 URL |
[45] |
ZHAO J, ZHANG Z, GAO Y, et al. Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt[J]. Scientific reports, 2015, 5:15048.
doi: 10.1038/srep15048 URL |
[46] |
GAO X, LI F, LI M, et al. Cotton GhBAK1 mediates Verticillium wilt resistance and cell death[J]. Journal of Integrative Plant Biology, 2013, 55:586-596.
doi: 10.1111/jipb.12064 URL |
[47] |
JONGE R, ESSE H, MARUTHACHALAM K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing[J]. PNAS, 2012, 109:5110-5115.
doi: 10.1073/pnas.1119623109 URL |
[48] |
Chen T, Kan J, Yang Y, et al. A Ve homologous gene from Gossypium barbadense, Gbvdr3, enhances the defense response against Verticillium dahliae[J]. Plant Physiology and Biochemistry, 2016, 98:101-111.
doi: 10.1016/j.plaphy.2015.11.015 URL |
[49] |
CHEN J, LI N, MA X, et al. The ectopic overexpression of the cotton Ve1 and Ve2-homolog sequences leads to resistance response to Verticillium wilt in Arabidopsis[J]. Frontiers in plant science, 2017, 8:844.
doi: 10.3389/fpls.2017.00844 URL |
[50] |
ZHANG Y, WANG X, YANG S, et al. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana[J]. Plant cell reports, 2011, 30:2085-2096.
doi: 10.1007/s00299-011-1115-x URL |
[51] |
ZHANG B, YANG Y, CHEN T, et al. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae[J]. Plos one, 2012, 7:e51091.
doi: 10.1371/journal.pone.0051091 URL |
[52] |
MO H, WANG X, ZHANG Y, et al. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae[J]. Plant journal, 2015, 83:962-975.
doi: 10.1111/tpj.12941 URL |
[53] |
GAO W, LONG L, ZHU L, et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae[J]. Molecular & cellular proteomics, 2013, 12:3690-3703.
doi: 10.1074/mcp.M113.031013 URL |
[54] |
LI Y, HAN L, WANG H, et al. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton[J]. Plant physiology, 2016, 170:2392-2406.
doi: 10.1104/pp.15.01930 URL |
[55] |
MUNIS M, TU L, DENG F, et al. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco[J]. Biochemical and biophysical research communications, 2010, 393:38-44.
doi: 10.1016/j.bbrc.2010.01.069 URL |
[56] | DUAN X, ZHANG Z, JIN W, et al. Characterization of a novel cotton subtilase gene GbSBT1 in response to extracellular stimulations and its role in Verticillium resistance[J]. Plos one, 2016, 11:e153988. |
[57] |
QU Z, ZHONG N, WANG H, et al. Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis[J]. Plant and cell physiology, 2006, 47:1058-1068.
doi: 10.1093/pcp/pcj076 URL |
[58] | ZHANG W, ZHANG H, LIU K, et al. Large-scale identification of Gossypium hirsutum genes associated with Verticillium dahliae by comparative transcriptomic and reverse genetics analysis[J]. Plos one, 2017, 12:e181609. |
[59] |
LIU N, ZHANG X, SUN Y, et al. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton[J]. Scientific reports, 2017, 7:39840.
doi: 10.1038/srep39840 URL |
[60] |
YANG J, JI L, WANG X, et al. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt[J]. Plant cell reports, 2015, 34:1429-1441.
doi: 10.1007/s00299-015-1798-5 URL |
[61] |
QIAN G, YANG Z, WANG X, et al. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae[J]. Bmc plant biology, 2017, 17:59.
doi: 10.1186/s12870-017-1007-5 URL |
[62] |
GAO X, WHEELER T, LI Z, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt[J]. Plant journal, 2011, 66:293-305.
doi: 10.1111/j.1365-313X.2011.04491.x URL |
[1] | GUO Zhenwei, LI Yongshan, CHEN Mengni, FAN Qiaolan, WANG Hui. Effects of Cotton Straw Returning on Cotton Growth and Soil: Research Progress [J]. Journal of Agriculture, 2022, 12(12): 18-22. |
[2] | ZHAO Yubing, ZHANG Jie, LIU Liantao, SUN Donglei. Analysis of Drought Characteristics During Cotton Growing Season in Southern Hebei Province Based on SPEI [J]. Journal of Agriculture, 2022, 12(12): 56-62. |
[3] | XU Min, LI Jinglin, YE Fumin, ZHU He, WANG Zisheng. Effects of Temperature and Humidity on Cotton Seed Germination [J]. Journal of Agriculture, 2022, 12(10): 10-14. |
[4] | LIU Wei, LIU Fangdan, LU Zhanhua, LU Dongbai, WANG Shiguang, WANG Xiaofei, XUE Jiao, HE Xiuying. Rice Bacterial Leaf Streak: Research Progress on Occurrence and Development and Resistance Genes [J]. Journal of Agriculture, 2022, 12(10): 15-20. |
[5] | LIU Xiao, GENG Jun, XING Maode, LIU Ping, LIU Chao. Application of Trap Plants in Cotton Pest Control [J]. Journal of Agriculture, 2022, 12(10): 21-24. |
[6] | Wen Qinglin, Liu Shaodong. No Film Mulching Drip Irrigation in Southern Xinjiang: Effects on Cotton Seedling Emergence and Growth Index [J]. Journal of Agriculture, 2021, 11(6): 19-24. |
[7] | Wang Wei, Zheng Shufeng, Xu Daoqing, Liu Xiaoling, Kan Huachun, Chen Min, Li Shuying, Lu Xianyong, Cheng Furu, Lu Xijie. Application of Unmanned Aerial Vehicle (UAV) in Cotton Field Cultivation Management [J]. Journal of Agriculture, 2021, 11(4): 44-50. |
[8] | Chen Mengni, Li Yongshan, Wang Hui, Fan Qiaolan. County-level Cotton Planting Patterns and Fertilization Techniques in Shanxi [J]. Journal of Agriculture, 2021, 11(4): 6-12. |
[9] | DAI Maohua, LIU Liying, LIU Xuemei, LI Chenhui, WU Zhenliang. Breeding of ‘Hengmian 1670’: A Cotton Variety with Salt and Drought Tolerance, Good Quality and High Yield [J]. Journal of Agriculture, 2021, 11(12): 40-43. |
[10] | Li Xinghe, Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Xiong Yongbin, Zhang Xiangyun. 80 Cotton Germplasm Resources: Utilization Value Evaluation [J]. Journal of Agriculture, 2021, 11(11): 11-18. |
[11] | Liu Yi, Wang Yan, Zhang Qian, Feng Guoyi, Zhang Xi, Qian Yuyuan, Qi Hong. Photothermal Resource Distribution and Light Utilization in Cotton Rows: Under Cotton-wheat Intercropping [J]. Journal of Agriculture, 2020, 10(8): 13-18. |
[12] | . The Initial Period of Cotton Planting in Hebei Province [J]. Journal of Agriculture, 2019, 9(4): 92-94. |
[13] | . Planting Densities: Effects on Growth, Yield and Quality of 3 Cotton Varieties [J]. Journal of Agriculture, 2019, 9(12): 5-8. |
[14] | Yu Shuxun. The Development of Cotton Production in the Recent Hundred Years of China [J]. Journal of Agriculture, 2018, 8(1): 93-99. |
[15] | . Tobacco Resistance Mechanism to Insect Herbivores: Research Progress [J]. Journal of Agriculture, 2017, 7(8): 48-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||