Journal of Agriculture ›› 2018, Vol. 8 ›› Issue (10): 7-12.doi: 10.11923/j.issn.2095-4050.cjas18060019
Previous Articles Next Articles
Received:
2018-06-28
Revised:
2018-08-09
Accepted:
2018-08-24
Online:
2018-11-01
Published:
2018-11-01
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas18060019
[1] Matsuoka Y, Vigouroux Y, Goodman M M, et al. A single domestication for maize shown by multilocus microsatellite genotyping [J]. Proceedings of the National Academy of Sciences of USA, 2002, 99 (9): 6080-6084. [2] 岳玉兰, 朱 敏, 于 雷, 等. 玉米雄穗对产量影响研究进展 [J]. 玉米科学, 2010, 18 (4): 150-152. [3] Brewbaker J L. Diversity and genetics of tassel branch numbers in maize [J]. Crop Science, 2015, 55 (1): 65-78. [4] Geraldi I O, Miranda Filho J B, Vencovsky R. Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives [J]. Maydica, 1985, 30 (1): 1-14. [5] Upadyayula N, Silva H S, Bohn M O, et al. Genetic and QTL analysis of maize tassel and inforescence architecture [J]. Theory Applied Genetics, 2006, 112 (4): 592-606. [6] Gue R, Wasson C. Genetic analysis of tassel size and leaf senescence and their relationship with yield in two tropical low land maize populations [J]. African Crop Science Journal, 1996, 4 (3): 275-281. [7] 曹明秋, 何启志. 玉米雌雄穗分化和叶片生长的相关性及其在生产上的意义 [J]. 新疆农业科技, 1981: 15-21. [8] McSteen P, Laudencia-Chingcuanco D, Colasanti J. A floret by any other name: control of meristem identity in maize [J]. Trends in Plant Science, 2000, 5 (2): 61-66. [9] Bommert P, Satoh-Nagasawa N, Jackson D, et al. Genetics and evolution of inflorescence and flower development in grasses [J]. Plant Cell Physiology, 2005, 46 (1): 69-78. [10] Tanaka W, Pautler M, Jackson D, et al. Grass meristems II: inflorescence architecture, flower development and meristem fate [J]. Plant Cell Physiology, 2013, 54 (3): 313-324. [11] Thompson B E, Hake S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture [J]. Plant Physiology, 2009, 149 (1): 38-45. [12] Schuetzl S H, Mock J J. Genetics of tassel branch number in maize and its implications for a selection program for small tassel size [J]. Theoretical and Applied Genetics, 1978, 53 (6): 265-271. [13] 霍仕平. 玉米雄穗的遗传和相关性研究 [J]. 作物学报, 1993, 19 (6): 515-519. [14] Berke T, Rocheford T. Quantitative trait loci for tassel traits in maize [J]. Crop Science, 1999, 39 (5): 1439-1443. [15] Mickelson S M, Stuber C S, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize [J]. Crop Science, 2002, 42 (6): 1902-1909. [16] 汤华, 严建兵, 黄益勤, 等. 玉米5个农艺性状的QTL定位 [J]. 遗传学报, 2005, 32 (2): 203-209. [17] 高世斌, 赵茂俊, 兰海, 等. 玉米雄穗分枝数与主轴长的QTL鉴定 [J]. 遗传, 2007, 29 (8): 1013-1017. [18] Briggs W H, McMullen M D, Gaut B S, et al. Linkage mapping of domestication loci in a large maize teosinte backcross resource [J]. Genetics, 2007, 177 (3): 1915-1928. [19] 王迪, 李永祥, 王阳, 等. 控制玉米雄穗分枝数目和雄穗重的主效QTL的定位 [J]. 植物学报, 2011, 46 (1): 11-20. [20] Brown P J, Upadyayula N, Mahone G S, et al. Distinct genetic architectures for male and female inflorescence traits of maize [J]. Plos Genetics, 2011, 7 (11): e1002383. [21] 杨钊钊, 李永祥, 刘成, 等. 基于多个相关群体的玉米雄穗相关性状QTL分析 [J]. 作物学报, 2012, 38 (8): 1435-1442. [22] Chen Z L, Wang B B, Dong X M,et al. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population [J]. BMC Genomics, 2014, 15: 433. [23] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel [J]. Plos Genetics, 2014, 10 (9): e1004573. [24] Wu X, Li Y X, Shi Y S, et al. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize [J]. Plant Biotechnology Journal, 2016, 14 (7): 1551-1562. [25] Chen Z J, Yang C, Tang D G, et al. Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize [J]. Journal of Integrative Agriculture, 2017, 16 (7): 1432-1442. [26] Xu G H, Wang X F, Huang C, et al. Complex genetic architecture underlies maize tassel domestication [J]. New Phytologist, 2017, 214 (2): 852-864. [27] 代资举, 王新涛, 杨青, 等. 玉米雄穗分枝数主效QTL定位及qTBN5近等基因系构建 [J]. 作物学报, 2018, http://kns.cnki.net/kcms/detail/11.1809.S.20180611.0555.004.html. [28] Vollbrecht E, Springer P S, Goh L, et al. Architecture of floral branch systems in maize and related grasses [J]. Nature, 2005, 436: 1119-1126. [29] Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize [J]. Nature, 2006, 441: 227-230. [30] Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize [J]. Plant Cell, 2006, 18 (3): 574-585. [31] Long J A, Ohno C, Smith Z R, et al. TOPLESS regulates apical embryonic fate in Arabidopsis [J]. Science, 2006, 312 (5779): 1520-1523. [32] Szemenyei H, Hannon M, Long J A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis [J]. Science, 2008, 319 (5868): 1384-1386. [33] Gallavotti A, Long J A, Stanfield S, et al. The control of axillary meristem fate in the maize ramosa pathway [J]. Development, 2010, 137 (17): 2849-2856. [34] Wu X, Skirpan A, McSteen P. Suppressor of sessile spikelets1 functions in the ramose pathway controlling meristem determinacy in maize [J]. Plant Physiology, 2009, 149 (1): 205-219. [35] Bommert P, Lunde C, Nardmann J, et al. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase [J]. Development, 2005, 132 (6): 1235-1245. [36] Taguchi-Shiobara F, Yuan Z, Hake S, et al. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize [J]. Genes Development, 2001, 15: 2755-2766. [37] Walsh J, Waters C A, Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary [J]. Genes Development, 1998, 12: 208-218. [38] Justine Walsh, Michael Freeling. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex [J]. Plant Journal, 1999, 19 (4): 489-495. [39] Gallavotti A, Zhao Q, Kyozuka J, et al. The role of barren stalk1 in the architecture of maize [J]. Nature, 2004, 432: 630-635. [40] Skirpan A, Culler A H, Gallavotti A, et al. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development [J]. Plant Cell Physiology, 2009, 50 (3): 652-657. [41] 彭华, 何秀静, 高健, 等. 玉米SBP转录因子全基因组鉴定与功能分析[J]. 作物学报, 2016, 42 (2): 201-211. [42] Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries [J]. Development, 2010, 137 (8): 1243-1250. [43] Chuck G, Brown P, Meeley R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation [J]. Proceedings of the National Academy of Sciences USA, 2014, 111 (52): 18775-18780. [44] Zhang D, Sun W, Singh R, et al. GRF-interacting factor1 (gif1) Regulates shoot architecture and meristem determinacy in maize [J]. Plant Cell, 2018, 30: 360-374. [45] Li M F, Zhong W S, Yang F, et al. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture [J]. Plant Cell Physiol, 2018, 59 (3): 448-457. [46] Takagi H, Abe A, Yoshida K, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations [J]. Plant Journal, 2013, 74 (1): 174-183. [47] De Donato M, Peters S O, Mitchell S E, et al. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing [J]. PLoS One, 2013, 8 (5): e62137. [48] Alabady M S, Rogers W L, Malmberg R L. Development of transcriptomic markers for population analysis using restriction site associated RNA sequencing (RAR-seq) [J]. PLoS One, 2015, 10 (8): e0134855. [49] Bommert P, Je B I, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size [J]. Nature, 2013, 502: 555-558. |
[1] | SONG Wei, WANG Liwei, ZHANG Quanguo, LI Ronggai, ZHANG Dongmin, WANG Baoqiang, GUO Rui, SONG Liang, WEI Jianfeng, LI Xinghua, GAO Zengyu, ZHANG Wenying, WANG Jianghao. Maize Hybrid Variety ‘Jiyu 228’: Breeding and the New Heterosis Pattern [J]. Journal of Agriculture, 2022, 12(10): 6-9. |
[2] | MENG Yanyu, JING Yanjie, ZHOU Yinfu. Nitrogen Application Rate: Effects on Photosynthetic Characteristics and Grain Filling Characteristics of Maize [J]. Journal of Agriculture, 2022, 12(8): 10-15. |
[3] | WEI Xiaoyi, YANG Haifeng, WEI Feng, HONG Defeng, MA Junfeng, MA Yi, WANG Jiamu, SHI Dakun, HU Ning. Plant Type Characters of Maize with Different Genotypes: Heterosis Analysis [J]. Journal of Agriculture, 2022, 12(1): 1-5. |
[4] | ZHAO Yanmin, LIANG Yuhong, LIU Qiguang, YANG Shubao, HAN Zhenying, ZHENG Bo, YUE Peng, LI Mingwei. Effects of Biochar-based Organic Fertilizers on Biological Characters, Soil Nutrients and Microbial Communities of Cucurbita pepo [J]. Journal of Agriculture, 2022, 12(1): 39-44. |
[5] | WEI Feng, YANG Haifeng, WANG Jiamu, MA Yi, MA Junfeng, HONG Defeng, WEI Xiaoyi. The Combining Ability of Different Maize Hybrid Combinations and the Influencing Factors on Mechanical Grain Harvest Quality [J]. Journal of Agriculture, 2021, 11(12): 28-33. |
[6] | Shi Lei, Zhang Ruijia. Bio-organic Fertilizers: Effects on Fresh Corn Yield, Soil Nutrients and Microbes [J]. Journal of Agriculture, 2021, 11(11): 33-36. |
[7] | Wang Changliang, Ai Zhenguang, Yan Lihui, Chang Jianzhi, Li Yanchang, Hou Xianjun. Adaptability of 30 New Maize Varieties in Northern Henan [J]. Journal of Agriculture, 2021, 11(10): 23-27. |
[8] | Men Hongwen, Guo Shoupeng, Huang Changjian, Yu Jinyou, Kang Zhenqiang, Wang Baoguo. Effects of Planting Density on Agronomic Traits, Yield and Lodging Resistance of Maize with Different Plant Types [J]. Journal of Agriculture, 2021, 11(7): 1-6. |
[9] | Zhang Jiaxiang, Guo Yifan, Zhang Mei. Effects of 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize Under Salt Stress [J]. Journal of Agriculture, 2021, 11(7): 7-12. |
[10] | Liu Jiamin, Wang Yang, Niu Jincan, Zhang Zhiru, Liu Zhibin, Zhu Qiuhui, Ye Youliang, Huang Yufang. Effects of Densification on Corn Yield and Lodging Resistance Under Different Nitrogen Levels [J]. Journal of Agriculture, 2021, 11(2): 23-29. |
[11] | Yang Ning, Kong Linggang, Zhen Tiejun, Xia Zhenzhen, Yang Hui, Wang Luocai, Zheng Guoxi. Grey Correlation Analysis of Summer Corn Yield and Main Meteorological Factors [J]. Journal of Agriculture, 2020, 10(11): 37-42. |
[12] | Tan Youbin, Tang Gaomin, Su Daozhi. New National Silage Maize Variety ‘Zhongyu 335’: Breeding and Supporting Technology [J]. Journal of Agriculture, 2020, 10(9): 16-20. |
[13] | Gong Deping, Gong Wenliu. Impacts of Climate Change on Maize Production in Northeast China and Countermeasures [J]. Journal of Agriculture, 2020, 10(7): 35-38. |
[14] | Peng Changjun, Tang Yujun, Chen Zhiming, Wang Changyu, Cui Shiyou. Rapid Dehydration of Maize Kernel: Research Progress [J]. Journal of Agriculture, 2020, 10(6): 9-14. |
[15] | Li Hong, Wang Yuchao, Wang Ruijun, Xi Xiaoqian, Zhang Xuli. Maize/Cabbage Interplanting Modes: Benefit Evaluation Based on Principal Component Analysis [J]. Journal of Agriculture, 2020, 10(5): 21-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||