Journal of Agriculture ›› 2020, Vol. 10 ›› Issue (12): 21-25.doi: 10.11923/j.issn.2095-4050.cjas20190900184
Previous Articles Next Articles
Kang Xuemeng1(), Ma Mengying1, Gong Wenjing2, Duan Haiyan1()
Received:
2019-09-10
Revised:
2019-10-30
Online:
2020-12-20
Published:
2020-12-23
Contact:
Duan Haiyan
E-mail:1162414882@qq.com;1144983024@qq.com
CLC Number:
Kang Xuemeng, Ma Mengying, Gong Wenjing, Duan Haiyan. Rice Grain Shape Genes: Research Progress and Application[J]. Journal of Agriculture, 2020, 10(12): 21-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas20190900184
[1] |
Schruff M C, Spielman M, Tiwari S, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J]. Development, 2006,133(2):251-261.
doi: 10.1242/dev.02194 URL pmid: 16339187 |
[2] |
Ray D K, Ramankutty N, Mueller N D, et al. Recent patterns of crop yield growth and stagnation[J]. Nature communications, 2012,3:1293.
doi: 10.1038/ncomms2296 URL pmid: 23250423 |
[3] |
Xing Y, Zhang Q. Genetic and molecular bases of rice yield[J]. Annual review of plant biology, 2010,61:421-442.
doi: 10.1146/annurev-arplant-042809-112209 URL pmid: 20192739 |
[4] | 石春海. 水稻粒形与优质米育种[J]. 中国农学通报, 1994(01):41-45. |
[5] | 杨联松, 白一松, 张培江, 等. 谷粒形状与稻米品质相关性研究[J]. 杂交水稻, 2001(04):51-53. |
[6] | 徐正进, 陈温福, 马殿荣, 等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报, 2004(09):894-900. |
[7] |
Zuo J, Li J. Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annual Review of Genetics, 2014,48(1):99-118.
doi: 10.1146/annurev-genet-120213-092138 URL |
[8] | 杨维丰, 詹鹏麟, 林少俊, 等. 水稻粒形的遗传研究进展[J]. 华南农业大学学报, 2019(05):1-8. |
[9] | 林鸿宣, 黄宁. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J]. 中国农业科学, 1995,28(4):1-7. |
[10] |
Huang R, Jiang L, Zheng J, et al. Genetic bases of rice grain shape: so many genes, so little known[J]. Trends in plant science, 2013,18(4):218-226.
doi: 10.1016/j.tplants.2012.11.001 URL pmid: 23218902 |
[11] | 熊振民, 孔繁林. 大粒型水稻品种的遗传动态及其选育[J]. 浙江农业科学, 1976(02):26-29. |
[12] | 石春海, 申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析[J]. 作物学报, 1996(01):36-42. |
[13] | 邱先进, 袁志华, 何文静, 等. 水稻粒型基因克隆与分子育种研究进展[J]. 湖北农业科学, 2014,53(13):2977-2980. |
[14] | 宫李辉, 高振宇, 马伯军, 等. 水稻粒形遗传的研究进展[J]. 植物学报, 2011,46(06):597-605. |
[15] |
Wan X Y, Wan J M, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects[J]. Theoretical and Applied Genetics, 2006,112(7):1258-1270.
doi: 10.1007/s00122-006-0227-0 URL |
[16] |
Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006,112(6):1164-1171.
doi: 10.1007/s00122-006-0218-1 URL |
[17] |
Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010,107(45):19579-19584.
doi: 10.1073/pnas.1014419107 URL |
[18] | 王跃星. 水稻粒形基因GL7的克隆、功能研究及育种利用[D]. 北京:中国农业科学院, 2015. |
[19] |
Lee Y K, Kim G, Kim I, et al. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis[J]. Development, 2006,133(21):4305-4314.
doi: 10.1242/dev.02604 URL pmid: 17038516 |
[20] |
Wang Y, Xiong G, Hu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature genetics, 2015,47(8):944.
doi: 10.1038/ng.3346 URL pmid: 26147619 |
[21] |
Xia D, Zhou H, Liu R, et al. GL3. 3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular plant, 2018,11(5):754-756.
doi: 10.1016/j.molp.2018.03.006 URL pmid: 29567448 |
[22] |
Zhang X, Wang J, Huang J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences, 2012,109(52):21534-21539.
doi: 10.1073/pnas.1219776110 URL |
[23] |
Gao X, Zhang J, Zhang X, et al. Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling[J]. The Plant Cell, 2019,31(5):1077-1093.
doi: 10.1105/tpc.18.00836 URL pmid: 30923230 |
[24] |
Liu Q, Han R, Wu K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature communications, 2018,9(1):852.
doi: 10.1038/s41467-018-03047-9 URL pmid: 29487282 |
[25] |
Song X, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature genetics, 2007,39(5):623.
doi: 10.1038/ng2014 URL pmid: 17417637 |
[26] |
Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature genetics, 2008,40(8):1023.
doi: 10.1038/ng.169 URL pmid: 18604208 |
[27] |
Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell research, 2008,18(12):1199.
doi: 10.1038/cr.2008.307 URL pmid: 19015668 |
[28] |
Liu J, Chen J, Zheng X, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature plants, 2017,3(5):17043.
doi: 10.1038/nplants.2017.43 URL |
[29] |
Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature genetics, 2011,43(12):1266.
doi: 10.1038/ng.977 URL pmid: 22019783 |
[30] |
Xu C, Liu Y, Li Y, et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of experimental botany, 2015,66(9):2611-2623.
doi: 10.1093/jxb/erv058 URL pmid: 25711711 |
[31] |
Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature genetics, 2012,44(8):950.
doi: 10.1038/ng.2327 URL |
[32] | 王少奎. 水稻粒宽基因GW8的图位克隆及功能分析[Z]. 万方数据资源系统, 2012. |
[33] |
Shi C, Ren Y, Liu L, et al. Ubiquitin Specific Protease 15 Has an Important Role in Regulating Grain Width and Size in Rice[J]. Plant physiology, 2019,180(1):381-391.
doi: 10.1104/pp.19.00065 URL pmid: 30796160 |
[34] | 师翠兰. 水稻粒型调控基因OsUBP15的图位克隆与功能分析[D]. 北京:中国农业科学院, 2019. |
[35] |
Wang S, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature genetics, 2015,47(8):949.
doi: 10.1038/ng.3352 URL pmid: 26147620 |
[36] |
Ying J, Ma M, Bai C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular plant, 2018,11(5):750-753.
doi: 10.1016/j.molp.2018.03.007 URL pmid: 29567450 |
[37] |
Hu J, Wang Y, Fang Y, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular plant, 2015,8(10):1455-1465.
doi: 10.1016/j.molp.2015.07.002 URL pmid: 26187814 |
[38] | 尉鑫, 曾智锋, 杨维丰, 等. 水稻粒形遗传调控研究进展[J]. 安徽农业科学, 2019,47(05):21-28. |
[39] |
Yan S, Zou G, Li S, et al. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and applied genetics, 2011,123(7):1173.
doi: 10.1007/s00122-011-1657-x URL |
[40] |
Sun S, Wang L, Mao H, et al. A G-protein pathway determines grain size in rice[J]. Nature communications, 2018,9(1):851.
doi: 10.1038/s41467-018-03141-y URL pmid: 29487318 |
[41] |
Peleman J D, Van der Voort J R. Breeding by design[J]. Trends in plant science, 2003,8(7):330-334.
doi: 10.1016/S1360-1385(03)00134-1 URL pmid: 12878017 |
[42] | 余泓, 王冰, 陈明江, 等. 水稻分子设计育种发展与展望[J]. 生命科学, 2018,30(10):1032-1037. |
[43] | 张剑霞. 利用分子标记辅助选择转移野生稻增产QTL和聚合水稻优良基因[D]. 武汉:华中农业大学, 2009. |
[44] | 伍豪, 高利军, 黄娟, 等. 水稻粒长粒重主效基因GS3的功能标记开发与利用[J]. 西南农业学报, 2019,32(06):1211-1215. |
[45] | 李扬, 徐小艳, 严明, 等. 利用GS3基因功能性分子标记改良水稻粒型的研究[J]. 上海农业学报, 2016,32(01):1-5. |
[46] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017,31(06):665-672. |
[47] | 薛勇彪, 韩斌, 种康, 等. 水稻分子模块设计研究成果与展望[J]. 中国科学院院刊, 2018,33(09):900-908. |
[48] | 黄睿. 水稻新品种——中科804[J]. 农村新技术, 2019(03):41. |
[49] |
Zeng D, Tian Z, Rao Y, et al. Rational design of high-yield and superior-quality rice[J]. Nature plants, 2017,3(4):17031.
doi: 10.1038/nplants.2017.31 URL |
[50] |
Wang J, Van Ginkel M, Podlich D, et al. Comparison of two breeding strategies by computer simulation[J]. Crop Science, 2003,43(5):1764-1773.
doi: 10.2135/cropsci2003.1764 URL |
[51] |
Wang J, Eagles H A, Trethowan R, et al. Using computer simulation of the selection process and known gene information to assist in parental selection in wheat quality breeding[J]. Australian Journal of Agricultural Research, 2005,56(5):465-473.
doi: 10.1071/AR04285 URL |
[52] | 郭龙彪, 程式华, 钱前. 水稻基因设计育种的研究进展与展望[J]. 中国水稻科学, 2008(06):650-657. |
[53] |
Qian Q, Guo L, Smith S M, et al. Breeding high-yield superior quality hybrid super rice by rational design[J]. National Science Review, 2016,3(3):283-294.
doi: 10.1093/nsr/nww006 URL |
[1] | HE Mi, LI Xiaobo, HUANG Jing, HUANG Guangfu. The Relationship Between Leaf Area Index and Yield of Rice: Research Progress [J]. Journal of Agriculture, 2022, 12(8): 1-5. |
[2] | ZHANG Xitai, XIAO Lei, DONG Ce, XIE Shuqin, LIN Guifen. Wild Wheat Seedlings in Field: The Determination of Pre-harvest Sprouting Resistance and Genetic Analysis [J]. Journal of Agriculture, 2022, 12(8): 35-42. |
[3] | TENG Shihui. Functional Rice in Southern Shandong Province: Introduction and Variety Screening [J]. Journal of Agriculture, 2022, 12(7): 1-4. |
[4] | YAN Yu, WANG Weijian, YAO Yutian, CHEN Chen, QIU Jun, ZHANG Xiaowei, CHEN Xijun. Effect of Several Biological Agents on Controlling Rice Blast and Improving Yield and Quality of Organic Rice [J]. Journal of Agriculture, 2022, 12(7): 5-11. |
[5] | ZHANG Jinzhong. RNAi Vector Construction of Lilium GBSS Gene [J]. Journal of Agriculture, 2022, 12(7): 69-73. |
[6] | LIU Xianghe, KONG Jianghong. Research on the Relationship Between the Meteorological Factors and the Breeding of Shrimp and Crab in Xiangyang, Hubei [J]. Journal of Agriculture, 2022, 12(7): 74-80. |
[7] | LIU Qiongfeng, ZHOU Junyu, WU Haiyong, GU Yu, LI Mingde, HONG Xi, WU Jinshui, XIAO He’ai. Application Status of Integrated Planting-Breeding Circular Agriculture Mode in China [J]. Journal of Agriculture, 2022, 12(7): 81-88. |
[8] | GAO Feiyu. The Development of Biosafety Management Mechanism of Genetically Modified Technology: Countermeasures and Suggestions [J]. Journal of Agriculture, 2022, 12(7): 89-93. |
[9] | WANG Xiaodan, WANG Yaliang, ZHANG Yuping, XIANG Jing, ZHANG Yikai, CHEN Huizhe. Nitrogen Application: Effect on Yield and Quality of Machine Transplanted Large Panicle Single Cropping Rice [J]. Journal of Agriculture, 2022, 12(6): 1-4. |
[10] | ZHANG Xinfeng, ZHANG Guo, YU Julong, FANG Jichao, LUO Guanghua, ZHU Feng, SHU Zhaolin. Pymetrozine Compound Insecticides: Control Effect on Rice Planthopper and Safety for Spiders [J]. Journal of Agriculture, 2022, 12(6): 33-38. |
[11] | ZHOU Huaxing, DUAN Guoqing, JIANG He, LING Jun, HU Yuting. Population Genetics of Chinese Mitten Crab Between the Breeding and Wild Populations [J]. Journal of Agriculture, 2022, 12(6): 55-59. |
[12] | YU Yanmin, YAN Ping, WU Hongtao, LIU Haiying, XU Zhenhua, ZHANG Shuli, WU Licheng, YANG Zhongliang. Quality Traits’ Analysis of Newly Approved Rice Varieties of Heilongjiang Province in 2019 [J]. Journal of Agriculture, 2022, 12(4): 1-5. |
[13] | FAN Yunfang, LIU Lulu, ZHANG Jing, LUO Qing, ZHANG Bo, CAO Youlong. Screening on Hygromycin Resistance Concentration of Lycium barbarum [J]. Journal of Agriculture, 2022, 12(4): 57-60. |
[14] | SUN Yingying, WANG Chao, WANG Ruixia, MU Qiuhuan, MI Yong, LV Guangde, QI Xiaolei, SUN Xianyin, CHEN Yongjun, QIAN Zhaoguo, WU Ke. Wheat Lodging: Cause and Mechanism and Its Effect on Wheat Yield and Quality [J]. Journal of Agriculture, 2022, 12(3): 1-5. |
[15] | LIU Xiaoyue, ZHANG Yan, GE Yi, LIU Nengbin, LIU Weiguo. The Passivation Stability of Cadmium by Applying Common Mineral Materials [J]. Journal of Agriculture, 2022, 12(3): 40-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||