Journal of Agriculture ›› 2022, Vol. 12 ›› Issue (1): 45-52.doi: 10.11923/j.issn.2095-4050.cjas2021-0093
Previous Articles Next Articles
SONG Yanbo1(), YANG Yunhao1, DUAN Pengjun2, WANG Jiahao1, WEI Siqing1, ZHANG Yalong1
Received:
2021-05-17
Revised:
2021-08-02
Online:
2022-01-20
Published:
2022-02-24
CLC Number:
SONG Yanbo, YANG Yunhao, DUAN Pengjun, WANG Jiahao, WEI Siqing, ZHANG Yalong. Comparison Study of 6 Kinds of Tomato Leaf Epidermis Slice Techniques[J]. Journal of Agriculture, 2022, 12(1): 45-52.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas2021-0093
方法 | 时间/个 | 难度 | 取样面积占叶面积百分数/% | 定位性 | 清晰度 | 气孔/表皮毛真实性 | 气孔密度/开度与指数观测 |
---|---|---|---|---|---|---|---|
表皮撕取法 | 0.5~2 | +++ | 0.9~2.5 | ++ | ++ | +++ | +++ |
透明胶带法 | 3~6 | + | >90 | +++ | +++ | +++ | +++ |
指甲油印迹法 | 30 | + | >90 | +++ | ++ | + | ++ |
硅胶-指甲油印迹法 | 40 | + | >90 | +++ | ++ | + | ++ |
解离法 | 40 | ++ | 0.5~1.5 | + | ++ | ++ | ++ |
刮片法 | 0.5~2 | +++ | 0.7~2.0 | ++ | + | +++ | + |
方法 | 时间/个 | 难度 | 取样面积占叶面积百分数/% | 定位性 | 清晰度 | 气孔/表皮毛真实性 | 气孔密度/开度与指数观测 |
---|---|---|---|---|---|---|---|
表皮撕取法 | 0.5~2 | +++ | 0.9~2.5 | ++ | ++ | +++ | +++ |
透明胶带法 | 3~6 | + | >90 | +++ | +++ | +++ | +++ |
指甲油印迹法 | 30 | + | >90 | +++ | ++ | + | ++ |
硅胶-指甲油印迹法 | 40 | + | >90 | +++ | ++ | + | ++ |
解离法 | 40 | ++ | 0.5~1.5 | + | ++ | ++ | ++ |
刮片法 | 0.5~2 | +++ | 0.7~2.0 | ++ | + | +++ | + |
[28] | 宋杰, 李树发, 李世峰, 等. 遮阴对高山杜鹃叶片解剖和光合特性的影响[J]. 广西植物, 2019, 39(6):94-103. |
[29] | 姜成东, 蔡胜忠, 卢业凌. 杧果叶片气孔观察方法研究[J]. 热带农业科学, 2008(3):23-24. |
[30] | 王培, 陈玉蓉, 方仁, 等. 用保卫细胞鉴定花粉植株倍性方法的研究[J]. 中国农业大学学报, 1989, 6(2):141-146. |
[31] | 师长海, 李玉欣, 董宝娣, 等. 禾本科植物叶片表皮气孔观察的样品制备方法改良[J]. 植物生理学通讯, 2010, 46(4):395-398. |
[32] | 陈娜, 王婧. 白及叶片气孔观察方法的研究[J]. 安徽农业科学, 2015, 43(25):80-82. |
[33] | 楼柏丹, 姚岚. 几种观察植物表皮气孔方法的比较[J]. 生物学教学, 2015, 40(9):42-43. |
[34] | 封涛, 胡东. 单子叶植物叶片气孔观察方法改良的研究[J]. 植物研究, 2008(1):82-84. |
[35] | 黄新敏, 何生根, 李红梅, 等. 月季'卡罗拉'切花的气孔观察及特征[J]. 仲恺农业工程学院学报, 2013, 26(4):8-12. |
[36] | 苏云松, 郭华春, 杨雪兰. 马铃薯叶片气孔观察方法的比较研究[J]. 中国马铃薯, 2009, 23(1):37-39. |
[37] | WU S, ZHAO B. Using clear nail polish to make arabidopsis epidermal impressions for measuring the change of stomatal aperture size in immune response[M]. Methods Mol Biol, 2017:1578-1578. |
[38] | ZWIENIECKI Maciej A, HAANING Katrine S, BOYCE C Kevin, et al. Stomatal design principles in synthetic and real leaves[J]. Journal of the royal society interface, 2016, 13:1-7. |
[39] |
DRAKE P L, FROEND R H, FRANKS P J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance[J]. Journal of experimental botany, 2012, 64(2):495-505.
doi: 10.1093/jxb/ers347 URL |
[40] | 魏爱丽, 董惠文, 李雨春, 等. 小麦抗病性与气孔特性关系初探[J]. 作物杂志, 2010, 36(3):23-25. |
[41] |
MARTIN-Stpaul , DELZON S, COCHARD H. Plant resistance to drought depends on timely stomatal closure[J]. Ecology letters, 2017, 20(11):1437-1447.
doi: 10.1111/ele.2017.20.issue-11 URL |
[42] |
TAHIR A, RASOULI F, CHEN Z H, et al. A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions[J]. Environmental and experimental botany, 2020, 181(1):104300.
doi: 10.1016/j.envexpbot.2020.104300 URL |
[43] | ALI Kiani-Pouya, UTE Roessner, NIRUPAMA S, et al. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species[J]. Plant, cell & environment, 2017, 40(9):1900-1915. |
[44] | MAFAKHERI A, SIOSEMARDEH A, BAHRAMNEJAD , et al. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars[J]. Aust J crop Ssci, 2010, 4(8):580-585. |
[45] | LAWSON T, TERASHIMA I, FUJITA T, et al. A Platform for Performing Photosynbook[A].// Coordination Between Photosynbook and Stomatal Behavior[M]. Springer international publishing AG, 2018:141-161. |
[1] | SHUSEI Sato, SATOSHI Tabata, HIDEKI Hirakawa, et al. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature: International Weekly Journal of Science, 2012, 485:635-641. |
[2] |
RamóN Maldonado-Torres, MORALES-Camacho J I, FERNANDO López-Valdez, et al. Assessment of techno-functional and nutraceutical potential of tomato (Solanum lycopersicum) seed meal[J]. Molecules, 2020, 25(18):4235-4235.
doi: 10.3390/molecules25184235 URL |
[46] | 曾斌, 王庆亚, 唐灿明. 三个转Bt基因抗虫杂交棉杂种优势的解剖学分析[J]. 作物学报, 2008(3):496-505. |
[3] | 李君明, 项朝阳, 王孝宣, 等. “十三五”我国番茄产业现状及展望[J]. 中国蔬菜, 2021(2):13-20. |
[4] | REIMERS Kristin J, KEAST Debra R. Tomato consumption in the United States and its relationship to the US department of agriculture food pattern: results from what we eat in America 2005-2010[J]. Nutrition today, 2016, 1(1):1-8. |
[5] |
ROMANO R, LUCA L D, MANZO N, et al. A new type of tomato puree with high content of bioactive compounds from 100% whole fruit[J]. Journal of food science, 2020, 85(10):3264-3272.
doi: 10.1111/jfds.v85.10 URL |
[6] |
Perveen R, Suleria H, Anjum F M, et al. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and Allied Health Claims- A comprehensive Review[J]. Critical reviews in food science and nutrition, 2015, 55(7):919-929.
doi: 10.1080/10408398.2012.657809 URL |
[7] |
CHOKSI P M, JOSHI V Y. A Review on lycopene- extraction, purification, stability and applications[J]. International journal of food properties, 2007, 10(2):289-298.
doi: 10.1080/10942910601052699 URL |
[8] | LI N, WU X, ZHUANG W, et al. Tomato and lycopene and multiple health outcomes: Umbrella review[J]. Food chemistry, 2020, 343(3):1-40. |
[9] | GóMezprieto M S, CAJA M M, HERRAIZ M, et al. Supercritical fluid extraction of all-trans-lycopene from tomato[J]. Journal of agricultural & food chemistry, 2003, 51(1):3-7. |
[10] | CELMA A R, CUADROS F, F López-Rodríguez. Characterisation of industrial tomato by-products from infrared drying process[J]. Food & bioproducts processing, 2009, 87(4):282-291. |
[11] |
BERGOUGNOUX V. The history of tomato: From domestication to biopharming[J]. Biotechnology advances, 2014, 32(1):170-189.
doi: 10.1016/j.biotechadv.2013.11.003 URL |
[12] |
ACHUO E A, PRINSEN E, HÖFTE M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici[J]. Plant pathology, 2006, 55(2):178-186.
doi: 10.1111/ppa.2006.55.issue-2 URL |
[13] | 普晓妍, 王鹏程, 李苏. 亚热带森林附生植物叶片气孔特征及其可塑性对光照变化的响应[J]. 广西植物, 2020, 1(1):1-12. |
[14] |
LAWSON Tracy, BLATT Michael R. Stomatal size, speed, and responsiveness impact on photosynjournal and water use efficiency[J]. Plant physiology, 2014, 164(4):1556-1570.
doi: 10.1104/pp.114.237107 URL |
[15] | DU M, ZHAI Q, LEI D, et al. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen Attack[J]. The plant cell, 2014(7):7. |
[16] | WIPHAWEE L, VU A L, AH-Fong A, et al. How does phytophthora infestans evade control efforts? Modern insight into the late blight disease[J]. Phytopathology, 2018, 108(1):1-9. |
[17] | BIAN Z, ZHANG X, WANG Y, et al. Improving drought tolerance by altering the photosynthetic rate and stomatal aperture via green light in tomato (Solanum lycopersicum L.) seedlings under drought conditions[J]. Environmental and experimental botany, 2019, 167:1-30. |
[18] | NAZIR F, FARIDUDDIN Q, HUSSAIN A, et al. Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato[J]. Ecotoxicology and environmental safety, 2020, 207:1-14. |
[19] |
KINOSHITA Toshinori, TOH Shigeo, TORII Keiko U. Chemical control of stomatal function and development[J]. Current opinion in plant biology, 2021, 60(1):102010.
doi: 10.1016/j.pbi.2021.102010 URL |
[20] | 王萍, 邱念伟, 侯文雨, 等. “光和K+对气孔开度的影响”实验设计再优化[J]. 植物生理学报, 2020, 386(4):194-203. |
[21] | HAWORTH M, SCUTT C P, DOUTHE C, et al. Allocation of the epidermis to stomata relates to stomatal physiological control: stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty[J]. Environmental & experimental botany, 2018, 151(1):55-63. |
[22] | TAO J J, CHEN S Y, ZHANG J S. Simple methods for screening and statistical analysis of leaf epidermal cells in dicotyledonous plants[J]. Bio-protocol, 2016, 6:1916. |
[23] | LI F, CHEN X, ZHOU S, et al. Overexpression of SlMBP22 in Tomato Affects Plant Growth[J]. Plant science, 2020, 301(1):1-12. |
[24] | BIAN Z, ZHANG X, WANG Y, et al. Improving drought tolerance by altering the photosynthetic rate and stomatal aperture via green light in tomato (Solanum lycopersicum L.) seedlings under drought conditions[J]. Environmental and experimental botany, 2019, 167:1-30. |
[25] |
FARBER M, ATTIA Z, WEISS D. Cytokinin activity increases stomatal density and transpiration rate in tomato[J]. Journal of experimental botany, 2016, 67(2):6351-6362.
doi: 10.1093/jxb/erw398 URL |
[26] | 陈佰鸿, 李新生, 曹孜义, 等. 一种用透明胶带粘取叶片表皮观察气孔的方法[J]. 植物生理学通讯, 2004, 40(2):215-218. |
[27] | 温寿星, 郭祥桃, 黄镜浩, 等. 观察柑橘叶片表皮细胞与气孔结构的简易制片方法[J]. 东南园艺, 2016, 4(6):21-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||