农学学报 ›› 2021, Vol. 11 ›› Issue (11): 88-97.doi: 10.11923/j.issn.2095-4050.cjas2020-0152
• 农业工程/农业机械/生物技术/食品科学 • 上一篇 下一篇
收稿日期:
2020-07-30
修回日期:
2020-10-19
出版日期:
2021-11-20
发布日期:
2021-12-09
通讯作者:
王俊丽
E-mail:577908271@qq.com;411395583@qq.com
作者简介:
陈子涵,女,1996年出生,河南驻马店人,在读硕士,主要从事环境与健康方向的研究。通信地址:550025 贵州省贵阳市花溪区贵州医科大学,E-mail: 基金资助:
Chen Zihan(), Ren Jianguo, Wang Junli()
Received:
2020-07-30
Revised:
2020-10-19
Online:
2021-11-20
Published:
2021-12-09
Contact:
Wang Junli
E-mail:577908271@qq.com;411395583@qq.com
摘要:
DNA甲基化是一种重要的表观遗传修饰,能够有效调控基因组稳定性。为了了解DNA甲基化对植物生长发育的影响,本文归纳了近年来植物DNA甲基化的模式,总结了植物DNA甲基化的生物学功能,概括了DNA甲基化的研究方法,最后总结了植物DNA甲基化研究中存在的问题,并指明了研究方向,为后续植物基因组研究提供理论依据。
中图分类号:
陈子涵, 任建国, 王俊丽. 植物DNA甲基化研究进展[J]. 农学学报, 2021, 11(11): 88-97.
Chen Zihan, Ren Jianguo, Wang Junli. Research Advances on Plant DNA Methylation[J]. Journal of Agriculture, 2021, 11(11): 88-97.
方法 | 基本原理 | 主要覆盖范围 | 是否需要参考基因 | 参考文献 |
---|---|---|---|---|
高效液相色谱 | 水解、紫外检测 | 全基因组 | 否 | [ |
甲基化敏感扩增多态性 | 限制性内切酶 | 高CG区域 | 否 | [ |
全基因组亚硫酸盐测序 | 亚硫酸盐处理 | 全基因组 | 是 | [ |
简并代表性亚硫酸氢盐测序技术 | 亚硫酸盐处理+限制性内切酶 | 启动子和CpG岛 | 是 | [ |
甲基化DNA免疫共沉淀测序技术 | 抗体富集 | 高CG区域 | 是 | [ |
方法 | 基本原理 | 主要覆盖范围 | 是否需要参考基因 | 参考文献 |
---|---|---|---|---|
高效液相色谱 | 水解、紫外检测 | 全基因组 | 否 | [ |
甲基化敏感扩增多态性 | 限制性内切酶 | 高CG区域 | 否 | [ |
全基因组亚硫酸盐测序 | 亚硫酸盐处理 | 全基因组 | 是 | [ |
简并代表性亚硫酸氢盐测序技术 | 亚硫酸盐处理+限制性内切酶 | 启动子和CpG岛 | 是 | [ |
甲基化DNA免疫共沉淀测序技术 | 抗体富集 | 高CG区域 | 是 | [ |
[1] | 牛亚丹, 林伊荷, 张汉清, 等. DNA甲基化与骨代谢调节及骨质疏松症研究进展[J]. 生命科学, 2020, 32(2):162-169. |
[2] | 汪炳良, 李水凤, 曾广文, 等. 5-azaC对萝卜茎尖DNA甲基化和开花的影响[J]. 核农学报, 2005, 19(4):265-268. |
[3] | 陈芳, 王子成. 5-氮杂胞苷对小麦生长发育及DNA甲基化的影响[J]. 河南大学学报:自然科学版, 2011, 41(01):61-66. |
[4] | 袁媛, 魏渊, 于军, 等. 表观遗传与药材道地性研究探讨[J]. 中国中药杂志, 2015, 40(13):2679-2683. |
[5] | 申燕红. 表观遗传改良棉——纤维培育新突破[J]. 中国纤检, 2017(7):140-141. |
[6] |
Zhang X Y, Junshi Y, Ambka S, et al. Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis[J]. Cell, 2006, 126(6):1189-1201.
doi: 10.1016/j.cell.2006.08.003 URL |
[7] |
Ryan L, Ronan C. O'M>, Julian T F, et al. Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis[J]. Cell, 2008, 133(3):523-526.
doi: 10.1016/j.cell.2008.03.029 URL |
[8] | Marjori A M, Rebecca A M. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity[J]. Nature Reviews.Genetics, 2014, 15(6):394-408. |
[9] | Julie A L, Jiamu D, Christopher J, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1[J]. Nature: International weekly journal of science, 2013, 498(7454):385-389. |
[10] |
Zhang H, Ma Z Y, Zeng L, et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV[J]. Proceedings of the National Academy of Sciences, 2013, 110(20):8290-8295.
doi: 10.1073/pnas.1300585110 URL |
[11] | Zheng B L, Wang Z M, Li S B, et al. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis[J]. Genes and Development: a Journal Devoted to the Molecular Analysis of Gene Expression in Eukaryotes, Prokaryotes, and Viruses, 2009, 23(24):2850-2860. |
[12] |
Saicageethi N, Andrea D M, Kaushik P, et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs[J]. Plant Physiology, 2013, 162:116-31.
doi: 10.1104/pp.113.216481 URL |
[13] |
Zhong X, Hale C J, Law J A, et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons[J]. Nature Structural & Molecular Biology, 2012, 19(9):870-875.
doi: 10.1038/nsmb.2354 URL |
[14] |
Law J A, Ausin I, Johnson L M, et al. A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis[J]. Current Biology, 2010, 20(10):951-956.
doi: 10.1016/j.cub.2010.03.062 URL |
[15] | Ausin I, Todd C M, Joanne C, et al. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana[J]. Nature Structural& Molecular Biology, 2009, 16(12):1325-1327. |
[16] | Ausin I, Maxin V.C.G, Dhirendra K. S, et al. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22):8374-8381. |
[17] |
Zhu Y M, Jordan R, Gudrun B, et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing[J]. Molecular Cell, 2013, 49(2):298-309.
doi: 10.1016/j.molcel.2012.11.011 URL |
[18] | Zhang H, Tang K, Qian W, et al. An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis[J]. Molecular Cell, 2014, 54(3):418-430. |
[19] |
Henikoff S, Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis[J]. Genetics, 1998, 149:307-318.
pmid: 9584105 |
[20] |
Stroud H, Do T, Du J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis.[J]. Nature structural & molecular biology, 2013, 21(1):64-72.
doi: 10.1038/nsmb.2735 URL |
[21] |
Jiamu D, Zhong X H, Yana V, et al. Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants[J]. Cell, 2012, 151(1):167-180.
doi: 10.1016/j.cell.2012.07.034 pmid: 23021223 |
[22] |
James P J, Lianna J, Zuzana J, et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana[J]. Chromosoma, 2004, 112:308-315.
doi: 10.1007/s00412-004-0275-7 URL |
[23] |
Bartee L, Bende J, Ebbs M L. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases[J]. Molecular and Cellular Biology, 2005, 25(23):10507-10515.
doi: 10.1128/MCB.25.23.10507-10515.2005 URL |
[24] |
Finnegan, E J, Dennis, E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana[J]. Nucleic Acids Research, 1993, 21(10):2383-2388.
pmid: 8389441 |
[25] | 陈欣, 王子成. 植物DNA甲基转移酶[J]. 生命的化学, 2009, 29(4):534-538. |
[26] |
Mark W K, Douglas E R, Trevor L S, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics, 2003, 163(3):1109-1122.
doi: 10.1093/genetics/163.3.1109 URL |
[27] |
Lang Z B, Zhang H M, Zhu J K. Dynamics and function of DNA methylation in plants[J]. Nature reviews: molecular cell biology, 2018, 19(8):489-506.
doi: 10.1038/s41580-018-0016-z URL |
[28] | Caszymo X, Soringer N M, Muszynsk M G, et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4979-4984. |
[29] |
Liu Z W, Shao C R, Zhang C J, et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci[J]. PLoS genetics, 2014, 10(1):e1003948.
doi: 10.1371/journal.pgen.1003948 URL |
[30] |
Bruno H, Tatsuo K, Lucia D, et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis[J]. The EMBO journal, 2006, 25(12):2828-2836.
doi: 10.1038/sj.emboj.7601150 URL |
[31] |
Assaf Z, M. Yvonne K, Hsieh P H, et al. The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin[J]. Cell, 2013, 153(1):193-205.
doi: 10.1016/j.cell.2013.02.033 URL |
[32] | 李向男, 蔡宇良. 马哈利樱桃矮化砧的DNA甲基化水平及模式分析[J]. 西北植物学报, 2017, 37(5):864-871. |
[33] | 刘琼瑶, 黄华宏, 冯惠平, 等. 矮生观赏杉木DNA甲基化的水平与模式分析[J]. 园艺学报, 2015, 42(10):2015-2022. |
[34] | 李际红, 邢世岩, 张倩, 等. 叶籽银杏DNA甲基化水平与模式变异的研究[J]. 园艺学报, 2014, 41(8):1535-1544. |
[35] | 朱芹芹, 李忠爱, 何艳霞, 等. 表观遗传与花期调控研究进展[J]. 园艺学报, 2013, 40(9):1787-1794. |
[36] | 高乐旋, 陈家宽, 杨继. 表型可塑性变异的生态-发育机制及其进化意义[J]. 植物分类学报, 2008, 46(4):441-451. |
[37] |
Filomena D L, Pedro C, Alexandra M E J, et al. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization[J]. Proceedings of the National Academy of Sciences, 2008, 105(44):16831-16836.
doi: 10.1073/pnas.0808687105 URL |
[38] |
James W, Gao H B, Zhang J Y, et al. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis[J]. Nature genetics, 2018, 50(1):130-137.
doi: 10.1038/s41588-017-0008-5 URL |
[39] | Kit A H, Bernacchia G, Rolin D, et al. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening[J]. Planta: An International Journal of Plant Biology, 2008, 228(3):391-399. |
[40] |
Cheng J F, Niu Q F, Zhang B, et al. Downregulation of RdDM during strawberry fruit ripening[J]. Genome biology, 2018, 19(1):212.
doi: 10.1186/s13059-018-1587-x URL |
[41] | 许静静, 杨凯, 王文和, 等. 病毒侵染对西伯利亚百合DNA甲基化的影响[J]. 西北植物学报, 2011, 31(5):935-941. |
[42] | Wada Y, Kusano T, Sano H, et al. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants[J]. Molecular biology reports, 2004, 271(6):658-666. |
[43] |
Satge C, Moreau S, Sallet E, et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula[J]. Nature plants, 2016, 2(11):16166.
doi: 10.1038/nplants.2016.166 URL |
[44] | Marianna N, AlagurajL V, et al. Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17):4543-4548. |
[45] |
Rambani A, Rice J H, Liu J Y, et al. The Methylome of Soybean Roots during the Compatible Interaction with the Soybean Cyst Nematode[J]. Plant physiology, 2015, 168(4):1364-1377.
doi: 10.1104/pp.15.00826 pmid: 26099268 |
[46] |
Hewezi T, Lane T, Piya S, et al. Cyst Nematode parasitism induces dynamic changes in the root epigenome[J]. Plant Physiol, 2017, 174(1):405-420.
doi: 10.1104/pp.16.01948 pmid: 28298479 |
[47] | 徐妍. 灰斑病菌胁迫对大豆生理生化和DNA甲基化的影响[D]. 哈尔滨:哈尔滨师范大学, 2015. |
[48] |
Robert H.D, Mattia P J.S, et al. Widespread dynamic DNA methylation in response to biotic stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(32):2183-2191.
doi: 10.1073/pnas.1209329109 pmid: 22733782 |
[49] |
Tiwari S, Taylor J M, Wang M B, et al. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis[J]. Genome Biology, 2014, 15(9):458.
doi: 10.1186/s13059-014-0458-3 URL |
[50] | 郝梦真. 低温胁迫下西洋参DNA甲基化与其品质形成的关系[D]. 青岛:青岛大学, 2019. |
[51] |
Zhang B, Tieman D M, Jiao C, et al. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(44):12580-12585.
pmid: 27791156 |
[52] | 晁秋杰, 刘晓, 韩磊, 等. 高温胁迫诱导半夏基因组甲基化的变异分析[J]. 中国中药杂志, 2020, 45(02):341-346. |
[53] | 任茂, 李博, 徐延浩, 等. 高温胁迫诱导棉花甲基化变化分析[J]. 分子植物育种, 2017, 15(3):1069-1076. |
[54] | 曾子入, 贺从安, 张小康, 等. 高温胁迫诱导萝卜基因组甲基化变异分析[J]. 分子植物育种, 2018, 16(07):2094-2098. |
[55] |
Michael S, Navdeep S.C. ROS Function in Redox Signaling and Oxidative Stress[J]. Current Biology: CB, 2014, 24(10):R453-R462.
doi: 10.1016/j.cub.2014.03.034 URL |
[56] | 施江, 熊雨婕, 张晗, 等. 遮荫影响半夏DNA甲基化的MSAP分析[J]. 中国中药杂志, 2020, 45(06):1311-1315. |
[57] | 韩雅楠, 赵犇鹏, 崔向军. 非生物胁迫蒙古黄芪基因组的MSAP分析[J]. 基因组学与应用生物学, 2020, 39(7):3119-3125. |
[58] | 潘雅姣, 傅彬英, 王迪, 等. 水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J]. 中国农业科学, 2009, 42(9):3009-3018. |
[59] |
Xu J D, Zhou S S, Gong X Q, et al. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple[J]. Plant biotechnology journal, 2018, 16(2):672-687.
doi: 10.1111/pbi.2018.16.issue-2 URL |
[60] | Rafael R A, Maria I P M, Aan P O G, et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18):6853-6858. |
[61] | 杜驰, 张冀, 张丽丽, 张富春. 盐胁迫下盐穗木DNA甲基化程度与去甲基化酶基因(Ros1)表达的相关性研究[J]. 新疆农业科学, 2017, 54(5):878-885. |
[62] | 董蔚, 刘锡江, 高天雪, 等. 盐胁迫下蒺藜苜蓿MtMYBS1的DNA甲基化和组蛋白修饰状态分析[J]. 植物生理学报, 2018, 54(10):1596-1604. |
[63] |
Dong W, Song Y G, Zhao Z, et al. The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana[J]. Biochemical and biophysical research communications, 2017, 490(2):225-230.
doi: S0006-291X(17)31144-0 pmid: 28602696 |
[64] | 赵晓辉, 徐正进, 刘宛, 等. 镉、铜胁迫下拟南芥基因组DNA甲基化的MSAP分析[J]. 安徽农业科学, 2013, 41(5):1911-1915. |
[65] | 何玲莉, 沈虹, 王燕, 等. 铅胁迫下萝卜基因组DNA甲基化分析[J]. 核农学报, 2015, 29(7):1278-1284. |
[66] | 张凯凯, 陈兴银, 杨鹏, 等. 不同浓度镉胁迫对孔雀草DNA甲基化的影响[J]. 草业科学, 2016, 33(9):1673-1680. |
[67] | 丁国华, 郭丹蒂, 关旸, 等. 重金属铅镉对濒危植物中华水韭(Isoetes sinensis)DNA甲基化的影响[J]. 农业环境科学学报, 2017, 36(2):246-249. |
[68] | 殷欣. 镉胁迫下大豆生理生化特性及DNA甲基化变异的研究[D]. 哈尔滨:哈尔滨师范大学, 2016. |
[69] | 黑淑梅. 重金属铬对小麦根系DNA甲基化水平的影响[J]. 吉林农业科学, 2012, 37(2):14-15,26. |
[70] |
Kuo K C, Mccune R A, Gehrke C W, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA[J]. Nucleic acids research, 1980, 8(20):4763-4778.
pmid: 7003544 |
[71] |
Wagner I, Capesius I. Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography[J]. Biochimica et Biophysica Acta, 1981, 654(1):52-56.
pmid: 7272310 |
[72] |
Xiong L Z, XU C G, Maroof S M A. Patterns of cytosine methylation in an elite rice hybrid and its parental lines,detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics, 1999, 261(3):439-446.
pmid: 10323223 |
[73] | Hayatsu H. The bisulfite genomic sequencing used in the analysis of epigenetic states,a technique in the emerging environmental genotoxicology research[J]. Mutation Research: International Journal on Mutagenesis, Chromosome Breakage and Related Subjects, 2008, 659(1/2):77-82. |
[74] |
Costello J F, Fouse S D, Nagarajan R P. Genome-scale DNA methylation analysis[J]. Epigenomics, 2010, 2(1):105-117.
doi: 10.2217/epi.09.35 URL |
[75] |
Thorne N P, Rakyan V K, Johnson N, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis[J]. Nature biotechnology, 2008, 26(7):779-785.
doi: 10.1038/nbt1414 URL |
[76] |
Osabe K, Jenny D, Bedon, et al. Genetic and DNA methylation changes in cotton(Gossypium)genotypes and tissues[J]. PloS one, 2014, 9(1):e86049.
doi: 10.1371/journal.pone.0086049 URL |
[77] | Li L X, Jie Y, Dong Y S, et al. Optimization of an HPLC Method for Determining the Genomic Methylation Levels of Taxus Cells[J]. Journal of chromatographic science, 2016, 54(2):1-6. |
[78] |
Gao Y, Hao J L, Wang Z, et al. DNA methylation levels in different tissues in tea plant via an optimized HPLC method[J]. Horticulture, Environment, and Biotechnology, 2019, 60(6):967-974.
doi: 10.1007/s13580-019-00180-2 URL |
[79] |
Baurens F C, Nicolleau J, Legavre T, et al. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker[J]. Tree physiology, 2004, 24(4):401-407.
doi: 10.1093/treephys/24.4.401 URL |
[80] |
Gao Y, Hao J L, Wang Z, Song K J, et al. DNA methylation levels in different tissues in tea plant via an optimized HPLC method[J]. Horticulture, Environment, and Biotechnology, 2019, 60(6):967-974.
doi: 10.1007/s13580-019-00180-2 URL |
[81] | Finke A, Rozhon W, Pecinka A. Analysis of DNA Methylation Content and Patterns in Plants[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1694(24):277-298. |
[82] |
Vos P, Hogers R, Bleeker M, et al. AFLP a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995, 23(21):4407-4414.
pmid: 7501463 |
[83] |
Roberts R J, Vincze T, Posfai J, et al. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes[J]. Nucleic Acids Research, 2015, 43(Database issue):D298-299.
doi: 10.1093/nar/gku1046 URL |
[84] |
Li A, Hu B Q, Xue Z Y, et al. DNA Methylation in Genomes of Several Annual Herbaceous and Woody Perennial Plants of Varying Ploidy as Detected by MSAP[J]. Plant Molecular Biology Reporter, 2011, 29(4):784-793.
doi: 10.1007/s11105-010-0280-3 URL |
[85] |
Herrera C M, Bazaga P. Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory[J]. Molecular ecology, 2011, 20(8):1675-1688.
doi: 10.1111/j.1365-294X.2011.05026.x pmid: 21466603 |
[86] | 陈瑞娟, 何蕾, 孙梨宗, 等. 铜胁迫对拟南芥幼苗生长和基因组DNA甲基化的影响[J]. 生态学杂志, 2015, 34(9):2650-2657. |
[87] |
Xin C H, Hou R K, Wu F, et al. Analysis of cytosine methylation status in potato by methylation-sensitive amplified polymorphisms under low-temperature stress[J]. Journal of Plant Biology, 2015, 58(6):383-390.
doi: 10.1007/s12374-015-0316-1 URL |
[88] | 龚治, 张亚楠, 周世豪, 等. 甲基化敏感扩增多态性技术(MSAP)在生态学中的应用[J]. 生物安全学报, 2016, 25(1):7-12. |
[89] | Baubec T, Akalin A. Genome-wide analysis of DNA methylation patterns by high-throughput sequencing. In: Aransay A, Lavín Trueba J, eds. Field Guidelines for Genetic Experimental Designs in High-throughput Sequencing[M]. Heidelberg: Springer, 2016, 9:197-221. |
[90] |
Sun Y Y, Fan M, He Y J. DNA Methylation Analysis of the Citrullus lanatus Response to Cucumber Green Mottle Mosaic Virus Infection by Whole-Genome Bisulfite Sequencing[J]. Genes, 2019, 10(5):344.
doi: 10.3390/genes10050344 URL |
[91] | Li Q, Peter J H, Nathan M.S. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing[J]. Methods in molecular biology(Clifton, N.J.), 2018, 1676:185-196. |
[92] |
Martin S, Michiel V B, Magdalena W, et al. Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions[J]. BMC Plant Biology, 2017, 17(1):115.
doi: 10.1186/s12870-017-1070-y URL |
[93] | Aniruddha C J R, Lan M M, Morison I M, et al. Tools and Strategies for Analysis of Genome-Wide and Gene-Specific DNA Methylation Patterns[J]. Methods in Molecular Biology, 2017(1537):249-277. |
[94] | Xing X Y, Zhang B, Li D F, et al. Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq[J]. Methods in molecular biology(Clifton, N. J.), 2018, 1708(12):209-246. |
[95] |
Vinning K J, Pomraning K R, Wilhelm L J, et al. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression[J]. BMC genomics, 2012, 13:27.
doi: 10.1186/1471-2164-13-27 URL |
[96] | 房媛媛, 肖亮, 卢文杰, 等. DNA甲基化研究进展及其在木本植物中的发展趋势[J]. 中国科学:生命科学, 2020, 50(2):154-166. |
[97] |
Daniel Z, Mary G, Robert T K, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription[J]. Nature genetics, 2007, 39(1):61-69.
doi: 10.1038/ng1929 URL |
[98] |
Li X Y, Wang X F, He K, et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression[J]. The Plant cell, 2008, 20(2):259-276.
doi: 10.1105/tpc.107.056879 URL |
[1] | 徐悦, 王希, 申子萌. 植物可变剪接研究进展[J]. 农学学报, 2022, 12(8): 22-26. |
[2] | 聂雄峰, 黄雁飞, 陈桂芬, 黄玉溢, 刘斌, 刘永贤. 植物修复重金属超标农田研究进展[J]. 农学学报, 2022, 12(8): 48-54. |
[3] | 韩利红, 刘潮, 杨云锦, 唐利洲. 光强对罗平小黄姜生长和叶绿素荧光参数的影响[J]. 农学学报, 2022, 12(4): 47-53. |
[4] | 刘晓月, 张燕, 葛燚, 刘能斌, 刘卫国. 常用矿物质材料对镉钝化稳定性研究[J]. 农学学报, 2022, 12(3): 40-43. |
[5] | 段传宏, 张敬丽, 王晓云, 晏燕, 胡洁, 闰婧. 基于维数特征的园林植物林冠线和色彩分析[J]. 农学学报, 2022, 12(2): 60-64. |
[6] | 邱尧, 谭石勇, 文亚雄, 徐学文. 有机肥料对实现“碳达峰、碳中和”的作用[J]. 农学学报, 2022, 12(12): 34-39. |
[7] | 刘晓, 耿军, 邢茂德, 刘萍, 刘超. 诱集植物在棉花害虫防治中的应用[J]. 农学学报, 2022, 12(10): 21-24. |
[8] | 王欣芳, 冯晋芳, 侯思宇, 冯晋华, 杜伟, 冯红梅, 韩渊怀, 刘龙龙, 马名川, 王俊珍, 孙朝霞, 李红英. 不同基因型荞麦遗传转化体系初探[J]. 农学学报, 2021, 11(8): 14-21. |
[9] | 张丽丽, 章玉萍, 范涛, 陈明. 喂食桑叶粉对黄粉虫生长发育情况的影响[J]. 农学学报, 2021, 11(8): 80-84. |
[10] | 王林, 刘贵莲, 朱九堡, 王伟, 唐莉. 植物精油在动物机体应用的研究进展[J]. 农学学报, 2021, 11(8): 85-89. |
[11] | 张嘉祥, 国一凡, 张梅. 外源5-氨基乙酰丙酸对盐胁迫下玉米种子萌发及幼苗生长的影响[J]. 农学学报, 2021, 11(7): 7-12. |
[12] | 胡平, 张美, 李长师, 戚元培, 曾建, 方清茂. 巴州区重点药用植物种类及分布情况[J]. 农学学报, 2021, 11(7): 72-76. |
[13] | 王丽, 路运才. 玉米抗低温灾害调控技术研究进展[J]. 农学学报, 2021, 11(5): 1-4. |
[14] | 黄江南, 陈雨萌, 黄越, 尉吉乾. 重金属积累影响植物和植食性昆虫互作的研究进展[J]. 农学学报, 2021, 11(5): 42-45. |
[15] | 张文兴, 岳晓岚, 邓强, 陈文祥, 张周位, 黄苑龄, 谭微, 何海. 抗性微生物强化重金属污染土壤植物修复的研究进展[J]. 农学学报, 2021, 11(5): 46-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||