[1] |
WANG X Z. Mechanism of alternative splicing and its regulation (Review)[J]. Biomed rep, 2015, 3(2):152-158.
doi: 10.3892/br.2014.407
URL
|
[2] |
SLOTTE T. Splicing Variation at a Flowering Locus Chomeolog is associated with flowering time variation in the tetraploid capsella bursa-pastoris[J]. Genetics, 2009, 183(183):337.
doi: 10.1534/genetics.109.103705
URL
|
[3] |
MASTRANGELO A M, MARONE D, LAIDò G, et al. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity[J]. Plant science, 2012, 185: 40-49
|
[4] |
STAIGER D, BROWN J W S. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. The plant cell, 2013, 25(10):3640-3656
doi: 10.1105/tpc.113.113803
URL
|
[5] |
BARBAZUK W B, FU Y, Mcginnis K M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges[J]. Genome res, 2009, 18:1381-1392
doi: 10.1101/gr.053678.106
URL
|
[6] |
KALYNA M, SIMPSON C G, SYED N H, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis[J]. Nucleic acids res, 2012; 40(6):2454-2469.
doi: 10.1093/nar/gkr932
URL
|
[7] |
KONCZ C, DEJONG F, VILLACORTA N, et al. The spliceosome-activating complex:molecular mechanisms underlying the function of a pleiotropic regulator[J]. Front plant sci, 2012; 3:9.
|
[8] |
HOWARD J M, SANFORD J R. The RNAissance family: SR proteins as multifaceted regulators of gene expression[J]. Wiley interdiscip rev RNA, 2015, 6(1):93-110.
doi: 10.1002/wrna.1260
URL
|
[9] |
YEAP W C, NAMASIVAYAM P, HO C L. HnRNP-like proteins as post-transcriptional regulators[J]. Plant sci, 2014, 227:90-100.
doi: 10.1016/j.plantsci.2014.07.005
URL
|
[10] |
WACHTER A, RÜhl C, STAUFFER E. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation[J]. Front plant sci, 2012; 3:81.
|
[11] |
李稚锋, 王正志, 张成岗. 真核基因可变剪接研究现状与展望[J]. 生物信息学, 2004(2):35-38.
|
[12] |
林鲁萍, 马飞, 王义权. 基因选择性剪接的生物信息学研究概况[J]. 遗传, 2005(6):145-150.
|
[13] |
WANG L, XI Y, YU J, et al. A statistical method for thedetection of alternative splicing using RNA-seq[J]. PLoS one, 2010, 5(1):e8529.
doi: 10.1371/journal.pone.0008529
URL
|
[14] |
LE K, MITSOURAS K, ROY M, et al. Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data,Nucleic Acids Res[J]. PloS one, 2010, 5(1):e8529.
doi: 10.1371/journal.pone.0008529
URL
|
[15] |
SHANG X, CAO Y, MA L. Alternative splicing in plant genes:a means of regulating the environmental fitness of plants[J]. Int.J.mol.sci, 2017, 18(2):432
|
[16] |
Kan Z, Rouchka E C, Gish W R, et al. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs[J]. Genome research, 2001, 11(5):889-900.
pmid: 11337482
|
[17] |
MODREK B, LEE C. A genomic view of alternative splicing.[J]. Nature genetics, 2001, 30(1):13-19.
doi: 10.1038/ng0102-13
URL
|
[18] |
SABLOK G, POWELL B, BRAESSLER J, et al. Comparative landscape of alternative splicing in fruit plants[J]. Current plant biology, 2017(9-10):29-36
|
[19] |
BLENCOWE B J. Alternative splicing: new insights from global analyses[J]. Cell, 2006, 126(1):37-47.
doi: 10.1016/j.cell.2006.06.023
URL
|
[20] |
付畅, 黄宇. 转录组学平台技术及其在植物抗逆分子生物学中的应用[J]. 生物技术通报, 2011(6):40-46.
|
[21] |
LODHA T D, BASAK J. Plant-pathogen interactions: what microarray tells about it?[J]. Mol biotechnol, 2012, 50(1):87-97.
doi: 10.1007/s12033-011-9418-2
URL
|
[22] |
章天骄. 可变剪接的生物信息数据分析综述[J]. 生物信息学, 2012, 10(1):61-64.
|
[23] |
崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35(7):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0374
|
[24] |
张丁予, 章婷曦, 王国祥. 第二代测序技术的发展及应用[J]. 环境科学与技术, 2016, 39(9):96-102.
|
[25] |
高阳, 薛大伟, 钱前, 等. 二代测序技术在水稻基因组学和转录组学研究中的应用[J]. 中国水稻科学, 2015, 29(2):208-214.
doi: 10.3969/j.issn.1001-7216.2015.02.013
|
[26] |
俞晓玲, 姜文倩, 郑玲, 等. 单分子测序技术及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47(1):5-16.
|
[27] |
曹晨霞, 韩琬, 张和平. 第三代测序技术在微生物研究中的应用[J]. 微生物学通报, 2016, 43(10):2269-2276.
|
[28] |
VAN D, YAN J, DELPHINE N, et al. The third revolution in sequencing technology[J]. Trends in genetics, 2018:S0168952518300969-.
|
[29] |
KUMAR K R, COWLEY M J, DAVIS R L. Next-Generation Sequencing and Emerging Technologies[J]. Semin thromb hemost, 2019, 45(7):661-673.
doi: 10.1055/s-0039-1688446
URL
|
[30] |
FILICHKIN S A, PRIEST H D, GIVAN S A, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana[J]. Genome res, 2010, 20:45-58.
doi: 10.1101/gr.093302.109
URL
|
[31] |
郭小勤, 李德葆. 植物前体mRNA的选择性剪接[J]. 农业生物技术学报, 2006(5):809-815.
|
[32] |
WERNEKE J M, CHATFIELD J M, OGREN W L. Alternative m RNAsplicing generates the tworibulosebisphosphate carboxy-lase/oxygenase activase polypeptides in spinach and Arabidopsis[J]. Plant cell, 1989, 1:815-825
|
[33] |
邢永强, 何泽学, 刘国庆, 等. 拟南芥不同组织基因表达及可变剪接差异分析[J]. 生物化学与生物物理进展, 2019, 46(11):1118-1129.
|
[34] |
SHEN Y, ZHOU Z, WANG Z, et al. Global dissection of alternative splicing in paleopolyploid soybean[J]. Plant cell, 2014, 26(3):996-1008.
doi: 10.1105/tpc.114.122739
URL
|
[35] |
CHURBANOV A, WINTERS-HILT S, KOONIN E V, et al. Accumulation of GC donor splice signals in mammals[J]. Biology Direct, 2008, 3(1):30.
doi: 10.1186/1745-6150-3-30
URL
|
[36] |
THANARAJ T A, FRANCIS C. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions[J]. Nucleic acids research, 2001, 29(12):2581.
doi: 10.1093/nar/29.12.2581
URL
|
[37] |
WEI H, LOU Q, XU K, et al. Alternative splicingcomplexity contributes to genetic improvement of drought resistance in the ricemaintainer HuHan2B[J]. Sci Rep, 2017, 15, 7(1):11686.
|
[38] |
LU T, LU G, FAN D, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq[J]. Genome research, 2010, 20(9):1238.
doi: 10.1101/gr.106120.110
URL
|
[39] |
MEI W, LIU S, SCHNABLE J C, et al. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize[J]. Front plant sci, 2017, 8:694.
doi: 10.3389/fpls.2017.00694
URL
|
[40] |
TIAN L, ZHAO X, LIU H, et al. Alternative splicing of ZmCCA1 mediates drought response in tropical maize[J]. PLoSOne, 2019, 14(1):e0211623.
doi: 10.1371/journal.pone.0211623
URL
|
[41] |
ZHU G, LI W, ZHANG F, et al. RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii[J]. BMC genomics, 2018, 19(1):73.
doi: 10.1186/s12864-018-4449-8
URL
|
[42] |
LIU Z, QIN J, TIAN X, et al. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.)[J]. Plant biotechnol J, 2018, 16(3):714-726.
doi: 10.1111/pbi.12822
URL
|
[43] |
STAIGER D, BROWN J W S. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. Plant cell, 2013, 25:3640-3656.
doi: 10.1105/tpc.113.113803
URL
|
[44] |
FILICHKIN S, PRIEST H D, MEGRAW M, et al. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress[J]. Curr opin plant biol, 2015, 24:125-135.
doi: 10.1016/j.pbi.2015.02.008
URL
|
[45] |
LALOUM T, GUIOMAR Martín, DUQUE P. Alternative splicing control of abiotic stress responses[J]. Trends in plant science, 2017, 23(2):140.
doi: 10.1016/j.tplants.2017.09.019
URL
|
[46] |
CHANG C Y, LIN W D, TU S L. Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens[J]. Plant physiol, 2014, 165,826-840.
doi: 10.1104/pp.113.230540
URL
|
[47] |
肖燕, 姚珺玥, 刘冬, 等. 甘蓝型油菜响应低氮胁迫的表达谱分析[J]. 作物学报, 2020, 46(10):1526-1538.
|
[48] |
韩林宏, 江海洋. 植物选择性剪接研究进展[J]. 分子植物育种, 2020, 18(10):3259-3265.
|
[49] |
GU J, LI W, WANG S, et al. Differential alternative splicing genes in response to boron deficiency in brassica napus[J]. Genes (Basel), 2019, 10(3):224.
doi: 10.3390/genes10030224
URL
|