[1] 张晓文, 赵改宾, 杨仁全, 等.农作物秸秆在循环经济中的循环利用[J]. 农业工程学报, 2006, 22(增1): 107-109. [2] 高利伟, 马林, 张卫峰, 等. 中国作物秸秆养分资源数量估算及其利用状况[J]. 农业工程学报, 2009, 25(7): 173-179. [3] 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响[J]. 土壤学报, 2014, 51 (1): 150-157. [4] 江永红, 宇振荣, 马永良. 秸秆还田对农田生态系统及作物生长的影响[J]. 土壤通报, 2001, 32(5): 209-213. [5] 李新举, 张志国, 李贻学. 土壤深度对还田秸秆腐解速度的影响[J]. 土壤学报, 2001, 38(l): 136-138. [6] 陈尚洪, 朱钟麟, 吴婕, 等. 紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响[J]. 水土保持学报, 2006, 20(6): 141-144. [7] 王允青, 郭熙盛. 不同还田方式作物秸秆腐解特征研究[J].中国生态农业学报, 2008, 16(3): 607-610. [8] 沈海军, 祝飞华, 顾炽明, 等. 关中灌区秸秆还田条件下施氮量对冬小麦产量及氮素利用的影响[J]. 西北农业学报, 2012, 21(8): 72-76. [9] 颜丽,宋杨,贺靖,等.玉米秸秆还田时间和还田方式对土壤肥力和作物产量的影响[J]. 土壤通报, 2004, 35(2): 143-148. [10] 郑立臣,解宏图,张威,等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J]. 生态环境,2006,15(1):80-83. [11] 张静, 温晓霞, 廖允成, 等. 不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响[J].植物营养与肥料学报, 2010, 16(3): 612-619. [12] Ma L W, Peterson G A, Ahuja I R, et al. Decomposition of surface crop residues in long-term studies of dry land agroecosystems[J]. Agronomy Journal, 1999, 91:401-409. [13] 李新举,张志国,李贻学.土壤深度对还田秸秆腐解速度的影响[J]. 土壤学报, 2001, 38(1): 135-138. [14] 迟凤琴, 匡恩俊, 宿庆瑞, 等.不同还田方式下有机物料有机碳分解规律研究[J]. 东北农业大学学报, 2010, 41(2): 60-65. [15] 杨志谦, 王维敏. 秸秆还田后碳、氮在土壤中的积累与释放[J]. 土壤肥料, 1991(5):43-46. [16] 南雄雄, 田霄鸿, 张琳, 等. 小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响[J]. 植物营养与肥料学报, 2010, 16(3): 626-633. [17] Iqbal A, Garnier P, Lashermes G, et al. A new equation to simulate the contact between soil and maize residues of different sizes during their decomposition[J]. Biology and Fertility of Soils, 2013, DOI: 10.1007//s00374-013-0876-5. [18] Cusack D F, Torn M S, McDowell W H, Silver W L. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils[J]. Global Change Biology, 2010, 16: 2555-2572. [19] Wallenstein M D, McMahon S K, Schimel J P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils[J].Global Change Biology, 2009, 15:1631-1639. [20] Hochachka P W, Somero G N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution[M]. Oxford, New York: Oxford University Press, 2002, 473. [21] Thomsen I K, Schjonning P, Jensen B, Kristensen K, Christensen B T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma, 1999, 89(3/4): 199-218. [22] Vanhala P, Karhu K, Tuomi M, Fritze H, Liski J. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone. Soil Biology and Biochemistry, 2008, 40(7): 1758-1764. [23] Coppens F, Garnier P, De Gryze S, Merckx R, Recous S. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. European Journal of Soil Science, 2006, 57(6): 894-90. [24] Kimura M, Asakawa S. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biology and Fertility of Soils, 2006, 43(1): 20-29. [25] Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 2010, 76(4): 999-1007. [26] 董志新, 孙波, 殷士学, 等. 气候条件和作物对黑土和潮土固氮微生物群落多样性的影响[J]. 土壤学报, 2012, 49 (1): 130-138. [27] Xu J M, Tang C, Chen Z L. Chemical composition controls residue decomposition in soils differing in initial pH[J]. Soil Biology and Biochemistry, 2006, 38(3): 544-552. [28] Jarvis S, Stockdale E, Shepherd M, Powlson D. Nitrogen mineralization in temperate agricultural soils: Processes and measurement[J]. Advances in Agronomy, 1996, 57: 187-235. [29] Motavalli P, Palm C, Parton W, Elliott E, Frey S. Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies[J]. Soil Biology and Biochemistry, 1995, 27(12): 1589-1599. [30] Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil, 1997, 191(1): 77-87. [31] Yadvinder S, Gupta R, Jagmohan S, Gurpreet S, Gobinder S, Ladha J. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice–wheat system in northwestern India[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3): 471-480. [32] Henriksen T, Breland T. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil[J]. Biology and Fertility of Soils, 2002, 35(1): 41-48. [33] Feng X J, Simpson M J. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality[J]. Soil Biology and Biochemistry, 2009, 41: 804-812. [34] 左玉萍, 贾志宽. 土壤含水量对秸秆分解的影响及动态变化[J]. 西北农林科技大学学报(自然科学版), 2004, 32(5): 61-63. [35] 江长胜, 杨剑虹, 谢德体, 等.有机物料在紫色田岩风化碎屑中的腐解及调控[J]. 西南农业大学学报, 2001, 23(5): 463-467. [36] 左玉萍, 贾志宽. 秸秆分解土壤水分适宜区间及临界值[J]. 西北农业学报, 2003, 12(3): 73-75. [37] 周海燕, 吴德敏, 李彦, 等. 秸秆还田条件下不同氮肥运筹对冬小麦产量、农艺性状及氮素利用效率的影响[J]. 山东农业科学, 2011, (5):55-59. [38] 匡恩俊, 迟凤琴, 宿庆瑞, 等. 不同还田方式下玉米秸秆腐解规律的研究[J]. 玉米科学, 2012, 20(2): 99-101, 106. [39] Geisseler D, Horwath W R, Joergensen R G, et al. Pathways of nitrogen utilization by soil microorganisms: A review [J]. Soil Biology and Biochemistry, 2010, 42: 2058-2067. [40] Lvaro-Fuentes J, Morell F J, Madejon E, et al. Soil biochemical properties in a semiarid Mediterranean agroecosystem as affected by long-term tillage and N fertilization[J]. Soil and Tillage Research, 2013, 129:69-74. [41] Nicolardot B, Recous S, Mary B. Simulation of C and N mineralization during crop residue decomposition: A simple dynamic model based on the C: N ratio of the residues[J]. Plant Soil, 2001, 228(1): 83-103. [42] Wang W J, Baldock J A, Dalal R C, Moody P W. Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis[J]. Soil Biology and Biochemistry, 2004, 36(12): 2045-2058 [43] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews, 1988, 63(3): 433-462 [44] Leung P, Pointing S. Effect of different carbon and nitrogen regimes on Poly R decolorization by white-rot fungi[J]. Mycological Research, 2002, 106(1): 86-92 [45] Arcand M M, Knight J D, Farrell R E. Differentiating between the supply of N to wheat from above and belowground residues of preceding crops of pea and canola[J]. Biology and Fertility of Soils, 2013, DOI: 10. 1007 // s00374-013-0877-4. [46] Baumann K, Marschner P, Smernik R J, et al. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues[J]. Soil Biol Biochem, 2009, 41:1966-1975. [47] 张红, 吕家珑, 曹莹菲, 等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报, 2014, 51(4): 743-751. [48] Pascault N, Cécillon L, Mathieu O, et al. In Situ Dynamics of Microbial Communities during Decomposition of Wheat, Rape, and Alfalfa Residues[J]. Microbial Ecology, 2010, 60(4): 816-828. [49] 喻曼, 曾光明, 陈耀宁, 等. PLFA 法研究稻草固态发酵中的微生物群落结构变化[J]. 环境科学, 2007, 28(11): 2063-2068. [50] 杨军, 陈晓民, 赵炳梓, 等. 土壤质地对秸秆分解的影响及其微生物机制[J]. 土壤, 2015, 47(6): 1085-1091. [51] Bastian F, Bouziri L, Nicolardot B, et al.Impact of wheat straw decomposition on successional patterns of soil microbial community structure[J]. Soil Biology and Biochemistry, 2009, 41(2): 262-275. [52] Poulsen P H B, Al-Soud W A, Bergmark L, et al. Effects of fertilization with urban and agricultural organic wastes in a field trial prokaryotic diversity investigated by pyrosequencing[J]. Soil Biology and Biochemistry, 2013, 57: 784-793.
|