Journal of Agriculture ›› 2022, Vol. 12 ›› Issue (10): 44-50.doi: 10.11923/j.issn.2095-4050.cjas2021-0042
Previous Articles Next Articles
ZHANG Huiying(), WANG Ying, HAN Chenggui()
Received:
2021-03-09
Revised:
2022-02-11
Online:
2022-10-20
Published:
2023-01-05
Contact:
HAN Chenggui
E-mail:13231083180@163.com;hanchenggui@cau.edu.com
CLC Number:
ZHANG Huiying, WANG Ying, HAN Chenggui. Progress of Transgenic Technology in Improving Staple Food Crops in China[J]. Journal of Agriculture, 2022, 12(10): 44-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas2021-0042
[1] | 凌闵. 浅谈转基因植物在我国农业上的应用现状及未来[J]. 上海农业科技, 2020(6):10-13. |
[2] | 廉雨乐. 转基因技术在玉米育种中的应用研究[J]. 农业开发与装备, 2020(6):91-92. |
[3] | 杨宏. 玉米病虫害综合防治技术的重要性探析[J]. 种子科技, 2020, 38(3):83,86. |
[4] | 王景超. 玉米转基因方法研究进展[J]. 现代农业科技, 2016(6):34-35. |
[5] | 焦金龙, 王伟, 张艳茹, 等. 转基因技术在玉米遗传育种中的应用分析[J]. 农业科技与信息, 2020(7):33-34. |
[6] | 黄敏, 杜何为, 张祖新. 玉米转基因技术研究进展[J]. 安徽农业科学, 2004, 32(5):1017-1020. |
[7] | 栾鑫超, 张冰琦, 孙笠原, 等. 基于核酸序列依赖性扩增技术的玉米转基因成分Bar的鉴定[J]. 种子, 2020, 39(5):88-91. |
[8] | 李梦桃. 转Btcry2Ah-vp和bar基因抗虫耐除草剂玉米的研究[D]. 哈尔滨: 东北农业大学, 2019. |
[9] | 李国平, 刘冰, 黄建荣, 等. 转聚合cry1A.105、cry2Ab2和cp4epsps基因抗虫耐除草剂玉米的田间抗性评价[J]. 植物保护, 2019, 45(1):142-147. |
[10] |
YIN Yue, XU Y D, CAO K L, et al. Impact assessment of Bt maize expressing the Cry1Ab and Cry2Ab protein simultaneously on non-target arthropods[J]. Environmental science and pollution research, 2020, 27(4):21552-21559.
doi: 10.1007/s11356-020-08665-9 URL |
[11] | LIU M M, ZHANG X J, GAO Y, et al. 抗虫抗草甘膦转基因玉米分子的特征及功能评价[J]. 浙江大学学报(B辑:生物医学和生物技术), 2018, 19(8):610-619. |
[12] |
LI K, LUO Y, HUANG K, et al. Single universal primer recombinase polymerase amplification-based lateral flow biosensor (SUP-RPA-LFB) for multiplex detection of genetically modified maize[J]. Analytica chimica acta, 2020, 1127:217-224.
doi: S0003-2670(20)30649-8 pmid: 32800127 |
[13] |
梁海生, 李梦桃, 李圣彦, 等. 转Bt基因抗虫玉米HGK60的农艺性状分析[J]. 生物技术通报, 2018, 34(7):92-100.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0219 |
[14] | 刘臣, 陈琳, 王冰洁, 等. 四种Bt蛋白对六种重要鳞翅目害虫的杀虫活性评价[J]. 中国生物防治学报, 2017, 33(6):774-779. |
[15] | 任龙, 沈明鹤, 王溪竹, 等. 转基因玉米防治草地贪夜蛾应用进展[J]. 现代农药, 2020, 19(2):12-15. |
[16] |
HU Y, GUO M, ZHUO Q, et al. Three-generation reproductive toxicity of genetically modified maize with Cry1Ab and epsps genes[J]. Journal of agricultural and food chemistry, 2020, 68(39):10912-10919.
doi: 10.1021/acs.jafc.0c02237 URL |
[17] |
铁双贵, 陈小洁, 岳润清, 等. 转Sb401基因高赖氨酸蛋白玉米植株的获得[J]. 华北农学报, 2013, 28(4):66-68.
doi: 10.3969/j.issn.1000-7091.2013.04.012 |
[18] | 岳静. 高赖氨酸蛋白新基因的克隆及其在玉米遗传改良中的应用[D]. 北京: 中国农业大学, 2014:1-20. |
[19] |
WANG M, GUAN X. The effects of phytase transgenic maize on the community components and diversity of arthropods[J]. Journal of Asia-Pacific entomology, 2020, 23(4):1228-1234.
doi: 10.1016/j.aspen.2020.09.001 URL |
[20] |
CHEN Z Q, LIU Y, YIN Y J, et al. Expression of AtGA2ox1 enhances drought tolerance in maize[J]. Plant growth regulation, 2019, 89(2):203-215.
doi: 10.1007/s10725-019-00526-x |
[21] |
HUANG Y, ZHANG X X, LI Y H, et al. Overexpression of the suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. Journal of integrative agriculture, 2018, 17(12):2612-2623.
doi: 10.1016/S2095-3119(18)61998-7 |
[22] | 张帅. 关于小麦病虫害发生与防治的探讨[J]. 农民致富之友, 2014(8):153. |
[23] | 赵心如. 转基因技术在农业中的应用——以小麦、大豆等农作物为例[J]. 中国科技投资, 2017(34):323. |
[24] | 陈志忠. 小麦转基因技术研究及其应用[J]. 乡村科技, 2018(1):49-50. |
[25] | 胡金梅. 浅析小麦蚜虫的发生特点及防治措施[J]. 中国农业信息, 2016(7):81-82. |
[26] | 梁辉, 朱银峰, 朱祯, 等. 雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究[J]. 遗传学报, 2004(2):189-194. |
[27] | 郑爱泉, 张宝林. 小麦抗麦蚜基因工程的研究进展[J]. 贵州农业科学, 2015, 43(9):11-14. |
[28] | 徐琼芳, 李连城, 陈孝, 等. 基因枪法获得GNA转基因小麦植株的研究[J]. 中国农业科学, 2001(1):5-8. |
[29] | 段晓亮. 三种植物凝集素基因在转基因小麦中的表达及其抗蚜效果分析[D]. 北京: 中国农业大学, 2013:1-25. |
[30] | 梁芳, 崔钟池, 王海燕, 等. 转TaTLP1基因小麦的获得及抗叶锈性分析[J]. 农业生物技术学报, 2020, 28(6):963-973. |
[31] | 吴季荣, 邢宇俊, 梁杰, 等. 转WYMV-Nib8基因抗黄花叶病小麦的农艺性状[J]. 江苏农业科学, 2020, 48(19):115-118. |
[32] | 徐建伟, 于沐, 张果果, 等. 小麦转基因技术研究进展[J]. 现代农业科技, 2017(19):33,35. |
[33] | 范春捆. 小麦白粉病菌及其抗性基因研究进展[J]. 西藏农业科技, 2019, 41(2):77-82. |
[34] |
SU Q, WANG K, ZHANG Z. Ecotopic expression of the antimicrobial peptide DmAMP1W improves resistance of transgenic wheat to two diseases: Sharp eyespot and common root rot[J]. International journal of molecular sciences, 2020, 21(2):647.
doi: 10.3390/ijms21020647 URL |
[35] |
ZHOU Y, LI Y, QI X, et al. Overexpression of V-type H(+) pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions[J]. Scientific reports, 2020, 10(1):5020.
doi: 10.1038/s41598-020-62052-5 URL |
[36] | 石燚. 用转基因方法构筑水稻稻瘟病抗病性[D]. 雅安: 四川农业大学, 2014:1-8. |
[37] | LIU W, CHEN H, LI L, et al. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety[J]. Journal of the science of food and agriculture, 2020. |
[38] |
FANG J, WAN C, WANG W, et al. Engineering Herbicide-Tolerance Rice Expressing an acetohydroxyacid synthase with a single amino acid deletion[J]. International journal of molecular sciences, 2020, 21(4):1265.
doi: 10.3390/ijms21041265 URL |
[39] | 邓勇. 探索水稻主效抗病基因Xa3/Xa26的作用机制和OsWRKY45等位基因的功能差异[D]. 武汉: 华中农业大学, 2018:1-24. |
[40] | 高利芬, 刘鹏程, 夏志辉, 等. 水稻转基因系CX8621中Xa21的整合和表达[J]. 生物工程学报, 2016, 32(9):1255-1263. |
[41] | 宋兆强, 刘艳, 王宝祥, 等. 稻瘟病抗性基因Pi-ta、Pi-b、Pi54和Pi-km的育种利用价值评价[J]. 江苏农业学报, 2017, 33(5):968-974. |
[42] | 向阳. 抗虫转基因水稻检测技术研究综述[J]. 安徽农学通报, 2019, 25(10):15-18. |
[43] | 王飞. 抗虫转BT基因水稻大田农艺性状及其对氮、钾肥响应研究[D]. 武汉: 华中农业大学, 2014:7-21. |
[44] | 宋子叶, 林秀峰, 严一字, 等. 抗虫转基因水稻研究概况及其安全性[J]. 农业与技术, 2020, 40(8):15-16. |
[45] | 苏长青, 谢家建, 王奕海, 等. 转基因水稻Bt汕优63的整合结构和品系特异性定量PCR方法[J]. 农业生物技术学报, 2011, 19(3):434-441. |
[46] | 杜丽缺, 赵明超, 林拥军, 等. β-胡萝卜素加强的转基因水稻培育[J]. 华中农业大学学报, 2014, 33(5):1-7. |
[47] |
XU Z, YU M, YIN Y, et al. Generation of selectable marker-free soft transgenic rice with transparent kernels by downregulation of SSSII-2[J]. The crop journal, 2020, 8(1):53-61.
doi: 10.1016/j.cj.2019.05.006 URL |
[48] |
CHEN J, LIU X, LIU S, et al. Co-Overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants[J]. Frontiers in plant science, 2020, 11:1245.
doi: 10.3389/fpls.2020.01245 URL |
[49] |
LIU Y, LIU X, WANG X, et al. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice[J]. BMC plant biology, 2020, 20(1):514.
doi: 10.1186/s12870-020-02709-5 pmid: 33176681 |
[50] | 杨代常. 在水稻上种出“人血清白蛋白”[J]. 中国农村科技, 2016(6):30-33. |
[51] | 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1):114-119. |
[52] | 赵永成. 我国玉米病虫害防治与转基因玉米的应用前景分析[J]. 农业开发与装备, 2019(7):72,75. |
[53] |
LIIU Y, ZHANG S, ZHOU Q, et al. Subchronic feeding toxicity studies of drought-tolerant transgenic wheat MGX11-10 in Wistar Han RCC rats[J]. Food and Chemical Toxicology, 2020, 137:111129.
doi: 10.1016/j.fct.2020.111129 pmid: 31935424 |
[54] |
CAO X M, DONG Z Y, TIAN D, et al. Development and characterization of marker-free and transgene insertion site-defined transgenic wheat with improved grain storability and fatty acid content[J]. Plant biotechnology journal, 2020, 18(1):129-140.
doi: 10.1111/pbi.13178 pmid: 31141279 |
[1] | LIU Xianghe, KONG Jianghong. Research on the Relationship Between the Meteorological Factors and the Breeding of Shrimp and Crab in Xiangyang, Hubei [J]. Journal of Agriculture, 2022, 12(7): 74-80. |
[2] | LIU Qiongfeng, ZHOU Junyu, WU Haiyong, GU Yu, LI Mingde, HONG Xi, WU Jinshui, XIAO He’ai. Application Status of Integrated Planting-Breeding Circular Agriculture Mode in China [J]. Journal of Agriculture, 2022, 12(7): 81-88. |
[3] | ZHOU Huaxing, DUAN Guoqing, JIANG He, LING Jun, HU Yuting. Population Genetics of Chinese Mitten Crab Between the Breeding and Wild Populations [J]. Journal of Agriculture, 2022, 12(6): 55-59. |
[4] | SUN Yingying, WANG Chao, WANG Ruixia, MU Qiuhuan, MI Yong, LV Guangde, QI Xiaolei, SUN Xianyin, CHEN Yongjun, QIAN Zhaoguo, WU Ke. Wheat Lodging: Cause and Mechanism and Its Effect on Wheat Yield and Quality [J]. Journal of Agriculture, 2022, 12(3): 1-5. |
[5] | WU Jianbin, CHEN Kunhao, CHEN Muxi, CHEN Changming. Isolated Microspore Culture of Brassica Vegetables: A Review [J]. Journal of Agriculture, 2022, 12(3): 44-49. |
[6] | SONG Wei, WANG Liwei, ZHANG Quanguo, LI Ronggai, ZHANG Dongmin, WANG Baoqiang, GUO Rui, SONG Liang, WEI Jianfeng, LI Xinghua, GAO Zengyu, ZHANG Wenying, WANG Jianghao. Maize Hybrid Variety ‘Jiyu 228’: Breeding and the New Heterosis Pattern [J]. Journal of Agriculture, 2022, 12(10): 6-9. |
[7] | LI Xianfu, YANG Hui, AN Xueqin, WANG Chenzijun, DAI Xiumei, ZHANG Jiankui. Identification of Characteristics and SSR Molecular Markers of A New Flue-cured Tobacco Strain ‘Shiliuyan’ [J]. Journal of Agriculture, 2022, 12(1): 28-34. |
[8] | Xia Lijuan, Cai Kunpeng, Ma Lijuan, Chen Wenqiang, Wang Yu, Ding Chenlu, Ran Qiang, Cai Jian. Wheat Quality: Correlation Analysis and Cluster Analysis [J]. Journal of Agriculture, 2021, 11(8): 1-7. |
[9] | Liu Chuanhe, He Han, Shao Xuehua, Lai Duo, Kuang Shizi, Xiao Weiqiang, He Xiugu. Research Progress of Breeding and Cultivation Practices of Pineapple [J]. Journal of Agriculture, 2021, 11(8): 53-59. |
[10] | Wang Wumei, Wang Hui, Zhang Xiaozhong, Du Shiyun. “Past and Present” of ‘Koshihikari’ Rice Variety [J]. Journal of Agriculture, 2021, 11(6): 1-5. |
[11] | Guo Meiling, Guo Tai, Wang Zhixin, Zheng Wei, Li Candong, Zhao Haihong, Zhang Zhenyu, Liu Zhongtang. Soybean Variety ‘Henong 85’ with High Oil and High Yield, Multiple Resistance and Wide Adaptability: Study on Breeding [J]. Journal of Agriculture, 2021, 11(5): 5-12. |
[12] | Yang Lijuan, Wang Shikun, Li Yang, Yan Yuxin, Zhang Xu, Li Dong, Ma Huaping. IT Application in Breeding Under the Background of Big Data [J]. Journal of Agriculture, 2021, 11(3): 55-69. |
[13] | LI Haosheng, CHENG Dungong, LIU Cheng, HAN Ran, SONG Jianmin, LIU Aifeng, CAO Xinyou, GUO Jun, WANG Canguo, LIU Jianjun, ZHAO Zhendong, ZHAI Shengnan, ZI Yan, LI Faji. Drought-resistant and Water-saving Wheat Variety ‘Jimai 262’: Breeding Experience [J]. Journal of Agriculture, 2021, 11(12): 24-27. |
[14] | DAI Maohua, LIU Liying, LIU Xuemei, LI Chenhui, WU Zhenliang. Breeding of ‘Hengmian 1670’: A Cotton Variety with Salt and Drought Tolerance, Good Quality and High Yield [J]. Journal of Agriculture, 2021, 11(12): 40-43. |
[15] | Li Xinghe, Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Xiong Yongbin, Zhang Xiangyun. 80 Cotton Germplasm Resources: Utilization Value Evaluation [J]. Journal of Agriculture, 2021, 11(11): 11-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||