农学学报 ›› 2022, Vol. 12 ›› Issue (1): 45-52.doi: 10.11923/j.issn.2095-4050.cjas2021-0093
宋艳波1(), 杨云浩1, 段鹏军2, 王嘉浩1, 魏丝晴1, 张亚龙1
收稿日期:
2021-05-17
修回日期:
2021-08-02
出版日期:
2022-01-20
发布日期:
2022-02-24
作者简介:
宋艳波,女,1977年出生,黑龙江绥滨人,副教授,博士,主要从事植物生理与分子生物学研究。通信地址:030600 山西省晋中市太谷县山西农业大学生命科学学院,Tel:0354-6286908,E-mail: 基金资助:
SONG Yanbo1(), YANG Yunhao1, DUAN Pengjun2, WANG Jiahao1, WEI Siqing1, ZHANG Yalong1
Received:
2021-05-17
Revised:
2021-08-02
Online:
2022-01-20
Published:
2022-02-24
摘要:
结合番茄叶片结构特点,采用6种表皮制片技术对番茄叶片下表皮进行装片,并对不同方法的制片过程和观察效果进行比较研究。结果表明,番茄叶片薄,表皮为单层细胞,其上着生有丰富表皮毛,下表皮与疏松的海绵组织相邻;表皮撕取法和透明胶带粘取法可以真实地观测气孔大小、密度等静态性状指标和气孔开度等动态行为;因番茄叶柔软,刮片法对操作要求极高,而解离法不但用时长且效果不佳,都不适宜番茄叶下表皮制片;可撕拉型指甲油印迹法能获得气孔指数和气孔开度的印痕,但对叶片有一定损坏,而硅胶-指甲油双阶段印迹法对叶片没有损伤,可以多次印迹同一叶片相同部位,连续观测气孔运动及发育等动态行为。研究结果可为不同研究选择适合的番茄叶表皮制片方法提供依据。
中图分类号:
宋艳波, 杨云浩, 段鹏军, 王嘉浩, 魏丝晴, 张亚龙. 6种番茄叶表皮制片方法比较[J]. 农学学报, 2022, 12(1): 45-52.
SONG Yanbo, YANG Yunhao, DUAN Pengjun, WANG Jiahao, WEI Siqing, ZHANG Yalong. Comparison Study of 6 Kinds of Tomato Leaf Epidermis Slice Techniques[J]. Journal of Agriculture, 2022, 12(1): 45-52.
方法 | 时间/个 | 难度 | 取样面积占叶面积百分数/% | 定位性 | 清晰度 | 气孔/表皮毛真实性 | 气孔密度/开度与指数观测 |
---|---|---|---|---|---|---|---|
表皮撕取法 | 0.5~2 | +++ | 0.9~2.5 | ++ | ++ | +++ | +++ |
透明胶带法 | 3~6 | + | >90 | +++ | +++ | +++ | +++ |
指甲油印迹法 | 30 | + | >90 | +++ | ++ | + | ++ |
硅胶-指甲油印迹法 | 40 | + | >90 | +++ | ++ | + | ++ |
解离法 | 40 | ++ | 0.5~1.5 | + | ++ | ++ | ++ |
刮片法 | 0.5~2 | +++ | 0.7~2.0 | ++ | + | +++ | + |
方法 | 时间/个 | 难度 | 取样面积占叶面积百分数/% | 定位性 | 清晰度 | 气孔/表皮毛真实性 | 气孔密度/开度与指数观测 |
---|---|---|---|---|---|---|---|
表皮撕取法 | 0.5~2 | +++ | 0.9~2.5 | ++ | ++ | +++ | +++ |
透明胶带法 | 3~6 | + | >90 | +++ | +++ | +++ | +++ |
指甲油印迹法 | 30 | + | >90 | +++ | ++ | + | ++ |
硅胶-指甲油印迹法 | 40 | + | >90 | +++ | ++ | + | ++ |
解离法 | 40 | ++ | 0.5~1.5 | + | ++ | ++ | ++ |
刮片法 | 0.5~2 | +++ | 0.7~2.0 | ++ | + | +++ | + |
[28] | 宋杰, 李树发, 李世峰, 等. 遮阴对高山杜鹃叶片解剖和光合特性的影响[J]. 广西植物, 2019, 39(6):94-103. |
[29] | 姜成东, 蔡胜忠, 卢业凌. 杧果叶片气孔观察方法研究[J]. 热带农业科学, 2008(3):23-24. |
[30] | 王培, 陈玉蓉, 方仁, 等. 用保卫细胞鉴定花粉植株倍性方法的研究[J]. 中国农业大学学报, 1989, 6(2):141-146. |
[31] | 师长海, 李玉欣, 董宝娣, 等. 禾本科植物叶片表皮气孔观察的样品制备方法改良[J]. 植物生理学通讯, 2010, 46(4):395-398. |
[32] | 陈娜, 王婧. 白及叶片气孔观察方法的研究[J]. 安徽农业科学, 2015, 43(25):80-82. |
[33] | 楼柏丹, 姚岚. 几种观察植物表皮气孔方法的比较[J]. 生物学教学, 2015, 40(9):42-43. |
[34] | 封涛, 胡东. 单子叶植物叶片气孔观察方法改良的研究[J]. 植物研究, 2008(1):82-84. |
[35] | 黄新敏, 何生根, 李红梅, 等. 月季'卡罗拉'切花的气孔观察及特征[J]. 仲恺农业工程学院学报, 2013, 26(4):8-12. |
[36] | 苏云松, 郭华春, 杨雪兰. 马铃薯叶片气孔观察方法的比较研究[J]. 中国马铃薯, 2009, 23(1):37-39. |
[37] | WU S, ZHAO B. Using clear nail polish to make arabidopsis epidermal impressions for measuring the change of stomatal aperture size in immune response[M]. Methods Mol Biol, 2017:1578-1578. |
[38] | ZWIENIECKI Maciej A, HAANING Katrine S, BOYCE C Kevin, et al. Stomatal design principles in synthetic and real leaves[J]. Journal of the royal society interface, 2016, 13:1-7. |
[39] |
DRAKE P L, FROEND R H, FRANKS P J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance[J]. Journal of experimental botany, 2012, 64(2):495-505.
doi: 10.1093/jxb/ers347 URL |
[40] | 魏爱丽, 董惠文, 李雨春, 等. 小麦抗病性与气孔特性关系初探[J]. 作物杂志, 2010, 36(3):23-25. |
[41] |
MARTIN-Stpaul , DELZON S, COCHARD H. Plant resistance to drought depends on timely stomatal closure[J]. Ecology letters, 2017, 20(11):1437-1447.
doi: 10.1111/ele.2017.20.issue-11 URL |
[42] |
TAHIR A, RASOULI F, CHEN Z H, et al. A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions[J]. Environmental and experimental botany, 2020, 181(1):104300.
doi: 10.1016/j.envexpbot.2020.104300 URL |
[43] | ALI Kiani-Pouya, UTE Roessner, NIRUPAMA S, et al. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species[J]. Plant, cell & environment, 2017, 40(9):1900-1915. |
[44] | MAFAKHERI A, SIOSEMARDEH A, BAHRAMNEJAD , et al. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars[J]. Aust J crop Ssci, 2010, 4(8):580-585. |
[45] | LAWSON T, TERASHIMA I, FUJITA T, et al. A Platform for Performing Photosynbook[A].// Coordination Between Photosynbook and Stomatal Behavior[M]. Springer international publishing AG, 2018:141-161. |
[1] | SHUSEI Sato, SATOSHI Tabata, HIDEKI Hirakawa, et al. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature: International Weekly Journal of Science, 2012, 485:635-641. |
[2] |
RamóN Maldonado-Torres, MORALES-Camacho J I, FERNANDO López-Valdez, et al. Assessment of techno-functional and nutraceutical potential of tomato (Solanum lycopersicum) seed meal[J]. Molecules, 2020, 25(18):4235-4235.
doi: 10.3390/molecules25184235 URL |
[46] | 曾斌, 王庆亚, 唐灿明. 三个转Bt基因抗虫杂交棉杂种优势的解剖学分析[J]. 作物学报, 2008(3):496-505. |
[3] | 李君明, 项朝阳, 王孝宣, 等. “十三五”我国番茄产业现状及展望[J]. 中国蔬菜, 2021(2):13-20. |
[4] | REIMERS Kristin J, KEAST Debra R. Tomato consumption in the United States and its relationship to the US department of agriculture food pattern: results from what we eat in America 2005-2010[J]. Nutrition today, 2016, 1(1):1-8. |
[5] |
ROMANO R, LUCA L D, MANZO N, et al. A new type of tomato puree with high content of bioactive compounds from 100% whole fruit[J]. Journal of food science, 2020, 85(10):3264-3272.
doi: 10.1111/jfds.v85.10 URL |
[6] |
Perveen R, Suleria H, Anjum F M, et al. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and Allied Health Claims- A comprehensive Review[J]. Critical reviews in food science and nutrition, 2015, 55(7):919-929.
doi: 10.1080/10408398.2012.657809 URL |
[7] |
CHOKSI P M, JOSHI V Y. A Review on lycopene- extraction, purification, stability and applications[J]. International journal of food properties, 2007, 10(2):289-298.
doi: 10.1080/10942910601052699 URL |
[8] | LI N, WU X, ZHUANG W, et al. Tomato and lycopene and multiple health outcomes: Umbrella review[J]. Food chemistry, 2020, 343(3):1-40. |
[9] | GóMezprieto M S, CAJA M M, HERRAIZ M, et al. Supercritical fluid extraction of all-trans-lycopene from tomato[J]. Journal of agricultural & food chemistry, 2003, 51(1):3-7. |
[10] | CELMA A R, CUADROS F, F López-Rodríguez. Characterisation of industrial tomato by-products from infrared drying process[J]. Food & bioproducts processing, 2009, 87(4):282-291. |
[11] |
BERGOUGNOUX V. The history of tomato: From domestication to biopharming[J]. Biotechnology advances, 2014, 32(1):170-189.
doi: 10.1016/j.biotechadv.2013.11.003 URL |
[12] |
ACHUO E A, PRINSEN E, HÖFTE M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici[J]. Plant pathology, 2006, 55(2):178-186.
doi: 10.1111/ppa.2006.55.issue-2 URL |
[13] | 普晓妍, 王鹏程, 李苏. 亚热带森林附生植物叶片气孔特征及其可塑性对光照变化的响应[J]. 广西植物, 2020, 1(1):1-12. |
[14] |
LAWSON Tracy, BLATT Michael R. Stomatal size, speed, and responsiveness impact on photosynjournal and water use efficiency[J]. Plant physiology, 2014, 164(4):1556-1570.
doi: 10.1104/pp.114.237107 URL |
[15] | DU M, ZHAI Q, LEI D, et al. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen Attack[J]. The plant cell, 2014(7):7. |
[16] | WIPHAWEE L, VU A L, AH-Fong A, et al. How does phytophthora infestans evade control efforts? Modern insight into the late blight disease[J]. Phytopathology, 2018, 108(1):1-9. |
[17] | BIAN Z, ZHANG X, WANG Y, et al. Improving drought tolerance by altering the photosynthetic rate and stomatal aperture via green light in tomato (Solanum lycopersicum L.) seedlings under drought conditions[J]. Environmental and experimental botany, 2019, 167:1-30. |
[18] | NAZIR F, FARIDUDDIN Q, HUSSAIN A, et al. Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato[J]. Ecotoxicology and environmental safety, 2020, 207:1-14. |
[19] |
KINOSHITA Toshinori, TOH Shigeo, TORII Keiko U. Chemical control of stomatal function and development[J]. Current opinion in plant biology, 2021, 60(1):102010.
doi: 10.1016/j.pbi.2021.102010 URL |
[20] | 王萍, 邱念伟, 侯文雨, 等. “光和K+对气孔开度的影响”实验设计再优化[J]. 植物生理学报, 2020, 386(4):194-203. |
[21] | HAWORTH M, SCUTT C P, DOUTHE C, et al. Allocation of the epidermis to stomata relates to stomatal physiological control: stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty[J]. Environmental & experimental botany, 2018, 151(1):55-63. |
[22] | TAO J J, CHEN S Y, ZHANG J S. Simple methods for screening and statistical analysis of leaf epidermal cells in dicotyledonous plants[J]. Bio-protocol, 2016, 6:1916. |
[23] | LI F, CHEN X, ZHOU S, et al. Overexpression of SlMBP22 in Tomato Affects Plant Growth[J]. Plant science, 2020, 301(1):1-12. |
[24] | BIAN Z, ZHANG X, WANG Y, et al. Improving drought tolerance by altering the photosynthetic rate and stomatal aperture via green light in tomato (Solanum lycopersicum L.) seedlings under drought conditions[J]. Environmental and experimental botany, 2019, 167:1-30. |
[25] |
FARBER M, ATTIA Z, WEISS D. Cytokinin activity increases stomatal density and transpiration rate in tomato[J]. Journal of experimental botany, 2016, 67(2):6351-6362.
doi: 10.1093/jxb/erw398 URL |
[26] | 陈佰鸿, 李新生, 曹孜义, 等. 一种用透明胶带粘取叶片表皮观察气孔的方法[J]. 植物生理学通讯, 2004, 40(2):215-218. |
[27] | 温寿星, 郭祥桃, 黄镜浩, 等. 观察柑橘叶片表皮细胞与气孔结构的简易制片方法[J]. 东南园艺, 2016, 4(6):21-23. |
[1] | 朱婷艳, 武英娇, 李文琛, 董国庆, 黄云, 李淑君. 宁夏番茄气候适宜度变化特征分析[J]. 农学学报, 2022, 12(4): 67-74. |
[2] | 李静, 李世莹, 李青松. 黄腐酸用量对番茄产量及品质的影响[J]. 农学学报, 2022, 12(2): 54-59. |
[3] | 王婷婷, 杨恒哲, 李元峰, 赵文, 张淑敏, 周丽, 解学仕. 聚磷酸铵复合肥对设施番茄的肥效研究[J]. 农学学报, 2020, 10(9): 33-37. |
[4] | 赵满兴, 刘慧, 王静, 常慧璇, 程治蓉. 减量复合肥配施生物有机肥对番茄土壤肥力及酶活性的影响[J]. 农学学报, 2020, 10(2): 56-61. |
[5] | 王艳丹,方海东,李建查,张明忠,岳学文,张 雷,潘志贤,李 坤,史亮涛. 不同水肥管理对番茄品质和产量的影响[J]. 农学学报, 2019, 9(6): 39-45. |
[6] | 沙品洁,肖帅,王旭,刘希艳,王全红,吴文钢,杨琳. 番茄无土栽培标准综合体构建与应用[J]. 农学学报, 2019, 9(5): 44-47. |
[7] | 李世莹,岳艳军,冯梦喜,卢维宏,朱仁胜,程莹莹,韩燕来,谭金芳. 多元中微量元素对番茄生长发育及产量的影响[J]. 农学学报, 2018, 8(8): 27-31. |
[8] | 孙喜军,吕 爽,王 安,王小荣,孟 菁,高 莹,李 静,郝红艳. 套餐肥对设施番茄产量及品质的影响[J]. 农学学报, 2018, 8(12): 62-67. |
[9] | 刘爽. 番茄心室形成研究进展[J]. 农学学报, 2018, 8(12): 58-61. |
[10] | 刘明池,季延海,赵孟良,武占会. 菊芋发酵秸秆复合基质对番茄生长发育的影响[J]. 农学学报, 2017, 7(1): 63-68. |
[11] | 任凤山,高亮,张博. 5种杀菌剂对番茄茎腐病的室内筛选和田间防治[J]. 农学学报, 2016, 6(5): 18-22. |
[12] | 彭昌家1. 生物农药和生化复配制剂防治设施秋番茄温室白粉虱效果研究[J]. 农学学报, 2016, 6(5): 23-27. |
[13] | 李永平,康建坂,林珲. 番茄ISSR-PCR反应体系的优化与验证[J]. 农学学报, 2016, 6(3): 46-50. |
[14] | 王胤,王晓青,胡彬,李云龙,孙海. 8种杀菌剂对番茄晚疫病菌的室内抑菌试验[J]. 农学学报, 2016, 6(2): 48-51. |
[15] | 尹庆珍,张立永,王国华,尹伟平,郄丽娟,赵付江. 硬粉果番茄硬度遗传分析[J]. 农学学报, 2016, 6(10): 58-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||