欢迎访问《农学学报》,

农学学报 ›› 2023, Vol. 13 ›› Issue (6): 91-96.doi: 10.11923/j.issn.2095-4050.cjas2022-0065

• 农业信息 农业气象 • 上一篇    下一篇

高寒地区大豆产量动态预报研究

陈雪1(), 高梦竹2, 赵晶3, 李新华1, 乔梁4()   

  1. 1 黑龙江省气象服务中心,哈尔滨 150036
    2 黑龙江省气象台,哈尔滨 150030
    3 内蒙古兴安盟气象局,内蒙古乌兰浩特 137400
    4 黑龙江省气象数据中心,哈尔滨 150030
  • 收稿日期:2022-05-25 修回日期:2022-07-29 出版日期:2023-06-20 发布日期:2023-06-15
  • 通讯作者: 乔梁,男,1983年出生,黑龙江哈尔滨人,高级工程师,硕士,主要从事专业气象服务。通信地址:150030 黑龙江省哈尔滨市香坊区电碳路71号 黑龙江省气象数据中心,Tel:0451-55102409,E-mail:qiaolqlql@qq.com
  • 作者简介:

    陈雪,女,1992年出生,黑龙江哈尔滨人,硕士,研究方向:农业气象与气象灾害风险评估。通信地址:150036 黑龙江省哈尔滨市香坊区电碳路71号 黑龙江省气象服务中心,E-mail:

  • 基金资助:
    黑龙江省气象局科学技术研究项目“基于黑龙江省大豆产量预报的保险产品设计”(HQZC2021007)

Study on Dynamic Forecast of Soybean Yield in Alpine Region

CHEN Xue1(), GAO Mengzhu2, ZHAO Jing3, LI Xinhua1, QIAO Liang4()   

  1. 1 Heilongjiang Meteorological Service Center, Harbin 150036, Heilongjiang, China
    2 Heilongjiang Meteorological Observatory, Harbin 150030, Heilongjiang, China
    3 Hinggan League Meteorological Service, Ulanhot 137400, Inner Mongolia, China
    4 Heilongjiang Meteorological Data Center, Harbin 150030, Heilongjiang, China
  • Received:2022-05-25 Revised:2022-07-29 Online:2023-06-20 Published:2023-06-15

摘要:

研究旨在实现逐旬省级和市级的大豆产量预报。利用黑龙江省大豆产量资料分析其时空分布特征;结合各时段气象数据构建温度、降水、日照及综合气候适宜度模型,分析与相对气象产量相关性;构建基于气候适宜度指数的逐旬产量动态预报模型,对黑龙江省大豆产量进行动态预报。结果表明:(1)大豆年均单产空间上从南至北逐级递减,时间上呈年代际变化,各市县年均总产量差距显著,嫩江市大豆产量最高;(2)1995—2015年黑龙江省和嫩江市气候适宜度指数与其对应的大豆相对气象产量显著相关,构建的气候适宜度模型可以客观反映大豆各生长时段内气象条件情况;(3)1995—2015年模型回代检验平均准确率在80%以上,各时段趋势准确年份在12年以上,2017—2019年模型外推预报准确性均超过了85%。建立的产量预报模型可为黑龙江省大豆产量预报提供参考依据。

关键词: 黑龙江省, 大豆, 气候适宜度模型, 产量预报模型, 产量动态预报

Abstract:

To realize the soybean yield forecast at the provincial and municipal levels by every ten days, this paper analyzed the spatial and temporal distribution characteristics of soybean yield data in Heilongjiang Province. Established a temperature, precipitation, sunshine and comprehensive climate suitability model based on the meteorological data of each period, and analyzed their correlation with the relative meteorological yield. A dynamic yield forecast model based on climate suitability index was constructed to forecast soybean yield in Heilongjiang Province. The results showed that: (1) the annual per unit area yield of soybean decreased from south to north in space and showed interdecadal variation in time. There was a significant difference in annual total yield among cities and counties, and Nenjiang City had the highest soybean yield; (2) the climate suitability index of Heilongjiang Province and Nenjiang City from 1995 to 2015 was significantly correlated with the corresponding relative meteorological yield of soybean, the climate suitability model could objectively reflect the meteorological conditions in each growth period of soybean; (3) from 1995 to 2015, the average accuracy rate of model back substitution test was more than 80%, the trend accuracy year of each period was more than 12 years, and the accuracy of model extrapolation forecast from 2017 to 2019 exceeded 85%. The established yield forecast model can provide a reference basis for soybean yield prediction in Heilongjiang Province.

Key words: Heilongjiang Province, soybean, climate suitability model, yield forecast model, dynamic yield forecast