欢迎访问《农学学报》,

农学学报 ›› 2025, Vol. 15 ›› Issue (11): 41-48.doi: 10.11923/j.issn.2095-4050.cjas2024-0130

• 土壤肥料 资源环境 生态 • 上一篇    下一篇

基于GIS的民和县耕地土壤养分空间插值方法比较研究

李友维1(), 张骏达2, 蔡立群1()   

  1. 1 甘肃农业大学资源与环境学院,兰州 730070
    2 农业农村部耕地质量监测保护中心,北京 100125
  • 收稿日期:2024-07-02 修回日期:2024-11-21 出版日期:2025-11-19 发布日期:2025-11-19
  • 通讯作者:
    蔡立群,男,1976年出生,甘肃金昌人,教授,博士,主要从事土壤资源保护与生态环境重建、保护性耕作体系等方面的教学与科学研究工作。通信地址:730070 甘肃省兰州市安宁区甘肃农业大学,Tel:0931-7637087,E-mail:
  • 作者简介:

    李友维,女,1997年出生,四川泸州人,在读硕士,研究方向:农业资源利用。通信地址:730070 甘肃省兰州市安宁区甘肃农业大学,Tel:0931-7632496,E-mail:

  • 基金资助:
    国家重点研发计划项目“黄土高原旱作适水改土与产能提升技术模式及应用”(2021YFD190070400)

Comparative Study on Spatial Interpolation Methods of Cultivated Soil Nutrients in Minhe County Based on GIS

LI Youwei1(), ZHANG Junda2, CAI Liqun1()   

  1. 1 College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070
    2 Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
  • Received:2024-07-02 Revised:2024-11-21 Online:2025-11-19 Published:2025-11-19

摘要: 本研究以青海省民和县为研究区,运用GIS空间分析技术和地统计学方法,对土壤有机质、全氮、有效磷、速效钾进行空间变异性分析,探究最适合该区域的空间插值方法。结果表明:土壤各养分指标中速效钾空间变异最为剧烈,为55.5%,其他指标在34.5%~54.8%,均为中等变异。从空间分布特征来看,土壤有机质、全氮含量整体呈西北部高,西南部低的趋势,有效磷含量分布较为均衡,速效钾含量呈中部高逐渐向北递减的趋势。插值精度评价显示土壤有机质、有效磷、速效钾最佳空间插值方法为普通克里金插值法,全氮进行空间分布预测径向基函数法插值精度最优。研究结果可为民和县地区土壤养分空间分布变异性及其影响因素提供相应的参考借鉴。

关键词: GIS空间分析, 土壤养分, 空间插值, 半方差函数, 地统计学, 交叉验证, 插值方法

Abstract:

This study investigated the spatial variability of soil nutrients and evaluated various spatial interpolation methods in Minhe County, Qinghai Province. This study employed GIS spatial analysis and geostatistical methods to analyze the spatial variability of soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP) and available potassium (AK). The research aimed to determine the most suitable spatial interpolation method for each nutrient. The results showed that moderate spatial variability for all nutrients, with AK exhibiting the highest variation at 55.5%, while other nutrients ranged from 34.5% to 54.8%. Spatial distribution patterns revealed higher concentrations of soil organic matter and TN in the northwest decreasing towards the southwest. AP displayed a more uniform distribution, whereas AK was highest in the central region, gradually declining northward. Interpolation accuracy assessments indicated that the common Kriging method was optimal for SOM, AP, and AK, while the radial basis function method proved most accurate for TN. These findings provided valuable insights into the spatial distribution of soil nutrients in Minhe County and offer guidance for selecting appropriate interpolation methods in similar regions.

Key words: GIS spatial analysis, soil nutrients, spatial interpolation, semi-variance function, geostatistics, cross verification, interpolation method