Journal of Agriculture ›› 2021, Vol. 11 ›› Issue (11): 98-103.doi: 10.11923/j.issn.2095-4050.cjas2020-0198
Special Issue: 马铃薯
Previous Articles Next Articles
Jin Yanling1(), Zhao Hai1(), Zeng Fankui2
Received:
2020-09-07
Revised:
2021-01-18
Online:
2021-11-20
Published:
2021-12-09
Contact:
Zhao Hai
E-mail:jinyl@cib.ac.cn;zhaohai@cib.ac.cn
CLC Number:
Jin Yanling, Zhao Hai, Zeng Fankui. Value-added Utilization of Sweet Potato Starch Residue: A Review[J]. Journal of Agriculture, 2021, 11(11): 98-103.
Add to citation manager EndNote|Ris|BibTeX
URL: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas2020-0198
[1] |
Ding Y Y, Shen M Y, Wei D M, et al. Study on compatible characteristics of wheat and purple sweet potato starches[J]. Food Hydrocolloids, 2020, 107:105961.
doi: 10.1016/j.foodhyd.2020.105961 URL |
[2] |
Cui R B, Zhu F. Effect of ultrasound on structural and physicochemical properties of sweetpotato and wheat flours[J]. Ultrasonics Sonochemistry, 2020, 66:105118.
doi: 10.1016/j.ultsonch.2020.105118 URL |
[3] |
Liao L Y, Liu H H, Gan Z P, et al. Structural properties of sweet potato starch and its vermicelli quality as affected by heat-moisture treatment G[J]. International Journal of Food Properties, 2019, 22(1):1122-1133.
doi: 10.1080/10942912.2019.1626418 URL |
[4] | Wang F Z, Jiang Y, Guo W, et al. An Environmentally Friendly and Productive Process for Bioethanol Production from Potato Waste[J]. Biotechnology & Biofuel, 2016, 9:50. |
[5] | Xia J, Shu J Y, Yao K W, et al. Synergism of cellulase, pectinase and xylanase on hydrolyzing differently pretreated sweet potato residues[J]. Preparative Biochemistry & Biotechnology, 2020. 50(2):181-190. |
[6] | Mei X, Mu T H, Han J J. Composition and Physicochemical Properties of Dietary Fiber Extracted from Residues of 10 Varieties of Sweet Potato by a Sieving Method[J]. Journal of Agricultural & Food Chemistry, 2010, 58(12):7305-7310. |
[7] | 沈维亮, 靳艳玲, 丁凡, 等. 甘薯淀粉加工废渣生产蛋白饲料的工艺[J]. 粮食与饲料工业, 2017(12):41-45. |
[8] | 梁新红, 冯龙斐, 王田林, 等. 蒸汽爆破甘薯渣粉对小麦粉粉质及饼干品质特性的影响[J]. 食品科学, 2018, 39(23):60-65. |
[9] |
Arachchige M P M, Mu T H, Ma M M. Structural, physicochemical, and emulsifying properties of sweet potato pectin treated by high hydrostatic pressure and/or pectinase: A comparative study Running title: Comparative study of sweet potato pectin modified by various methods[J]. Journal of the Science of Food and Agriculture,DOI: 10.1002/jsfa.10552.
doi: 10.1002/jsfa.10552 |
[10] |
Huang M H, Cheng J, Chen P, et al. Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate[J]. Journal of Environmental Management, 2019, 237:147-154.
doi: 10.1016/j.jenvman.2019.02.041 URL |
[11] |
Shen N K, Wang Q Y, Zhu, J, et al. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137[J]. Bioresource Technology, 2016, 211:307-312
doi: 10.1016/j.biortech.2016.03.036 URL |
[12] |
Gu X L, Song Z H, Li H, et al. Effects of dietary isomaltooligosaccharide and Bacillus spp. supplementation during perinatalperiod on lactational performance, bloodmetabolites, and milk composition of sows[J]. Journal of the Science of Food and Agriculture, 2019, 99:5646-5653.
doi: 10.1002/jsfa.v99.13 URL |
[13] | 姚明静, 赵祥颖, 张立鹤, 等. 甘薯渣残留淀粉制备低聚异麦芽糖工艺的研究[J]. 食品科技, 2019, 44(8):254-260. |
[14] | 李成圆, 庞林江, 陆国权, 等. 糖化工艺对甘薯渣酶法制备低聚异麦芽糖产量的影响[J]. 食品工业, 2019, 40(1):135-138. |
[15] |
Shen F, Sun S, Yang J R, et al. Coupled Pretreatment with Liquid Nitrogen and Ball Milling for Enhanced Cellulose Hydrolysis in Water[J]. ACS Omega, 2019, 4(7):11756-11759.
doi: 10.1021/acsomega.9b01406 URL |
[16] |
Suzuki S, Takeoka Y, Rikukawa M, et al. Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield[J]. RSC Advanced, 2018, 8:14623-14632.
doi: 10.1039/C8RA01950A URL |
[17] | 王树宁, 冯龙斐, 黄滢洁, 等. 甘薯残渣纤维素酶解工艺研究[J]. 食品研究与开发, 2020, 41(8):179-182. |
[18] | Xia J, Shu J Y, Yao K W, et al. Synergism of cellulase, pectinase and xylanase on hydrolyzing differently pretreated sweet potato residues[J]. Preparative Biochemistry&Biotechnology, 2020, 50(2):181-190. |
[19] | Tan H T, Corbin K R, Fincher G B, et al. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls[J]. Frontiers in Plant Science, 2016, 7:1854. |
[20] | Liu M, Li X Z, Zhou S M, et al. Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile[J]. Food &Function, 2020, 11:689. |
[21] | 孟祥河, 戴建波, 曹艳, 等. 亚临界水提法提高甘薯皮可溶性膳食纤维得率[J]. 农业工程学报, 2019, 35(20):303-310. |
[22] |
Mau J L, Lee C C, Yang C W, et al. Physicochemical, antioxidant and sensory characteristics of bread partially substituted with aerial parts of sweet potato[J]. Lwt-Food Science and Technology, 2020, 117:108602.
doi: 10.1016/j.lwt.2019.108602 URL |
[23] | 张苗, 木泰华, 韩俊娟. 甘薯膳食纤维对馒头品质及老化的影响[J]. 江苏师范大学学报:自然科学版, 2016, 34(4):20-24. |
[24] | 岳瑞雪, 钮福祥, 孙健, 等. 富含甘薯膳食纤维酸奶的发酵工艺研究[J]. 江苏师范大学学报, 2017, 35(4):27-30. |
[25] | Zhang Y, Gu W L, Duan L Q, et al. Protective effect of dietary fiber from sweet potato (Ipomoea batatas L.) against lead-induced renal injury by inhibiting oxidative stress via AMPK/SIRT1/PGC1a signaling pathways[J]. Food Biochemistry, 2018, e12513. |
[26] | Drews A, Kempin M V, Kraume M. First systematic study on the impact of preparation conditions on characteristic Pickering emulsion properties[J]. Chemie Ingenieur Technik, Technik, 2020, 92(9):1295-1295. |
[27] |
Xie Y, Liu H B, Lia Y, et al. Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration[J]. Food Hydrocolloids, 2020, 108:105915.
doi: 10.1016/j.foodhyd.2020.105915 URL |
[28] | World Health Organization & Joint FAO/WHO Expert Committee on Food Additives (82nd, 2016, Geneva, Switzerland). Evaluation of certain food additives: eighty-second report of the Joint FAO/WHO Expert Committee on Food Additives [EB/OL]. https://apps.who.int/iris/bitstream/ handle/10665/250277/9789241210003-eng.pdf?sequence=1&isAllowed=y . 2016 |
[29] | EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen A, Aguilar F, et al. Scientific opinion on the re‐evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives[J]. EFSA J, 2017, 15(7):e4866. |
[30] | 刘倩倩. 甘薯渣果胶超声波辅助盐法提取工艺的优化[J]. 河南农业科学, 2015, 44(9):135-138. |
[31] | Hamidon N H, Zaidel D N A, Jusoh Y M M. Optimization of Pectin Extraction from Sweet Potato Peels using Citric Acid and Its Emulsifying Properties[J]. Recent Patents on Food, Nutrition & Agriculture, 2020, 11:202-210. |
[32] |
Li X, Dong Y, Guo Y, et al. Okra polysaccharides reduced the gelling-required sucrose content in its synergistic gel with high-methoxyl pectin by microphase separation effect[J]. Food Hydrocolloids, 2019, 95:506-516.
doi: 10.1016/j.foodhyd.2019.04.069 URL |
[33] |
Zhang M, Mu T H. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure[J]. Innovative Food Science and Emerging Technologies, 2017, 43:92-101.
doi: 10.1016/j.ifset.2017.08.001 URL |
[34] |
Ju D, Mu T H, Sun H N. Sweet potato and potato residual flours as potential nutritional and healthy food material[J]. Journal of Integrative Agriculture, 2017, 16(11):2632-2645.
doi: 10.1016/S2095-3119(16)61601-5 URL |
[35] |
Li Q J, Xue B, Zhao Y M, et al. In situ degradation kinetics of 6 roughages and the intestinal digestibility of the rumen undegradable protein[J]. Journal of Animal Science, 2018, 96:4835-4844.
doi: 10.1093/jas/sky298 URL |
[36] |
Hu N, Zhang K K, Zhao Y N, et al. Flotation-based dye removal system: Sweet potato protein fabricated from agro-industrial waste as a collector and frother[J]. Journal of Cleaner Production, 2020, 269:122121.
doi: 10.1016/j.jclepro.2020.122121 URL |
[37] |
Hakkak R, Bell A, Korourian S. Dehydroepiandrosterone (DHEA) Feeding Protects Liver Steatosis in Obese Breast Cancer Rat Model[J]. Scientia Pharmaceutica, 2017, 85(1):13.
doi: 10.3390/scipharm85010013 URL |
[38] |
Buttler R M, Martens F, Kushnir M M, et al. Simultaneous measurement of testosterone, androstenedione and dehydroepiandrosterone (DHEA) in serum and plasma using isotope-dilution 2-dimension ultra high performance liquid-chromatography tandem mass spectrometry (ID-LC-MS/MS)[J]. Clinica Chimica Acta, 2015, 438:157-159.
doi: 10.1016/j.cca.2014.08.023 URL |
[39] |
Ran J J, Liang X H, Du H M, et al. Optimization of DHEA Extraction from Sweet Potato Pomace by Ultrasonic-Microwave Synergistic Employing Response Surface Methodology[J]. Journal of AOAC International, 2019, 102(2):680-682.
doi: 10.5740/jaoacint.18-0232 URL |
[40] |
Rafiquzzaman S M, Lee J M, Ahmed R, et al. Characterisation of the hypoglycaemic activity of glycoprotein purified from the edible brown seaweed, Undaria pinnatifida[J]. International Journal of Food Science and Technology, 2015, 50(1):143-150.
doi: 10.1111/ijfs.2015.50.issue-1 URL |
[41] | Xia X J, Li G N, Zheng J, et al. Immune activity of sweet potato (Ipomoea batatas L.) glycoprotein after enzymatic and chemical modifications[J]. Food & Function, 2015, 6:2026. |
[42] |
Tang C, Sun J, Liu J, et al. Immune-enhancing effects of polysaccharides from purple sweet potato[J]. International Journal of Biological Macromolecules, 2019, 123:923-930.
doi: 10.1016/j.ijbiomac.2018.11.187 URL |
[43] |
Wang M M, Ma H, Tian C, et al. Bioassay-guided isolation of glycoprotein SPG-56 from sweet potato Zhongshu-1 and its anti-colon cancer activity in vitro and in vivo[J]. Journal of Functional Foods, 2017, 35:315-324.
doi: 10.1016/j.jff.2017.05.049 URL |
[44] | 刘倩倩. 正交优化甘薯淀粉渣中糖蛋白提取工艺[J]. 山东化工, 2015, 44(13):25-26,30. |
[45] |
Chen X F, Ma X Q, Peng X W, et al. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization[J]. Bioresource Technology, 2018, 249:900-907.
doi: 10.1016/j.biortech.2017.10.096 URL |
[46] |
Chen X F, Ma X Q, Peng X W, et al. Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste[J]. Bioresource Technology, 2018, 267:167-174.
doi: 10.1016/j.biortech.2018.07.032 URL |
[47] |
Wang J J, Peng X W, Chen X F, et al. Co-liquefaction of low-lipid microalgae and starch-rich biomass waste: The interaction effect on product distribution and composition[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139:250-257.
doi: 10.1016/j.jaap.2019.02.013 URL |
[48] | 陈莉, 司慧, 靳峰, 等. 改性甘薯渣对亚甲基蓝的吸附特性及吸附机制[J]. 环境工程学报, 2016, 10(8):4277-4283. |
[49] | 陈莉, 韩甲勋, 姜贞兰, 等. 甘薯渣生物吸附剂对碱基块绿的吸附性能[J]. 食品工业, 2019, 40(8):127-131. |
[50] | 陈莉, 庞婷, 闫瑞, 郑妍, 等. 改性甘薯渣吸附剂的制备及其对Cr6+和 Zn2+的吸附性能[J]. 保鲜与加工, 2019(4):125-130. |
[51] | 高美玲. 甘薯渣中可溶性膳食纤维对肠道菌群的影响[D]. 南昌:南昌大学, 2019. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||